06-240/Classnotes For Thursday October 5: Difference between revisions

From Drorbn
Jump to navigationJump to search
(Add missing examples)
No edit summary
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{06-240/Navigation}}
<math>\mbox{From last class}{}_{}^{}</math>

===Links to Classnotes===

* PDF file by [[User:Alla]]: [[Media:MAT_Lect008.pdf|Week 4 Lecture 2 notes]]
* PDF file by [[User:Gokmen]]: [[Media:06-240-lecture-05-october.pdf|Week 4 Lecture 2 notes]]

===Scan of Tutorial notes===

* PDF file by [[User:Alla]]: [[Media:MAT_Tut004.pdf|Week 4 Tutorial notes]]

----<math>\mbox{From last class}{}_{}^{}</math>


<math>M_1=\begin{pmatrix}1&0\\0&0\end{pmatrix},
<math>M_1=\begin{pmatrix}1&0\\0&0\end{pmatrix},

Latest revision as of 21:09, 24 October 2006

Links to Classnotes

Scan of Tutorial notes


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mbox{From last class}{}_{}^{}}










Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {}_{}^{}\mbox{6. In }V=P_1(\mathbb{R})=\lbrace ax+b\rbrace,\qquad \beta=\lbrace 1+x,1-x\rbrace\mbox{ is a basis}}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {}_{}^{}\mbox{2. Linearly independent. Assume }au_1+bu_2=0}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (a+b)+(a-b)\Rightarrow 2a=0\Rightarrow a=0}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (a+b)-(a-b)\Rightarrow 2b=0\Rightarrow b=0}



Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mbox{Theorem}{}_{}^{}}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {}_{}^{}\mbox{A subset }\beta\mbox{ of a vectorspace }V \mbox{ is a basis iff every }v\in V\mbox{ can be expressed as}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {}_{}^{}\mbox{a linear combination of elements in }} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {}_{}^{}\beta \mbox{ in exactly one way.}}


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mbox{Proof}{}_{}^{}}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {}_{}^{}\mbox{It is a combination of things we already know.}}

  1. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {}_{}^{}\beta\mbox{ generates}}
  2. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {}_{}^{}\beta\mbox{ is linearly independent}}