(ↄ) | Dror Bar-Natan: AcademicPensieve: Projects: Duflo: About    Recent Changes    This Month    Random

<<  wDuflo-2017  >>  
Jump to: Mathematica Notebooks | Images | Other Files

This is the construction / computation page for my joint paper with Zsuzsanna Dancso, Ribbon 2-Knots, $1+1=2$, and Duflo's Theorem for arbitrary Lie algebras (PDF here).

Abstract. By performing the calculation "$1+1=2$" on a 4D abacus, we explain in the most direct way we know how the study of "expansions", or "universal finite type invariants", for ribbon 2-knots leads to a proof of Duflo's theorem for arbitrary finite-dimensional Lie algebras. This complements the results of B-N, Le, and Thurston [BLT] where a similar argument using a 3D abacus and the Kontsevich integral was used to deduce Duflo's theorem yet only for metrized Lie algebras, and our results from [BND2] which also imply a relation of 2-knots with the full Duflo theorem, though via a lengthier path.

<< Subfolders >>  
figs  

<< PDF >>  
wDuflo.pdf   wDufloTagged.pdf  

<< Mathematica Notebooks >>

 Notebook (.pdf)Source (.nb)CreatedLast ModifiedSummary
1 index source 2024-03-17 10:28:51 2017-01-03 12:07:56  

<< Images >>

previous full screen next


WordCloud.png

<< Other Files >>

abstract.tex   dbnsymb.600pk   dbnsymb.mf   dbnsymb.sty   dbnsymb.tfm   defs.tex   macros.tex   main.tex   makefile   new_aux   old_aux   picins.sty   refs.tex   wDuflo.aux   wDuflo.brf   wDufloTagged.aux   wDufloTagged.brf   wDuflo.tex   wDuflo.zip  


   <<  wDuflo-2017  >>

All 4 Subfolders

figs   nb   previews   thumbs  

All 25 Files

abstract.tex   dbnsymb.600pk   dbnsymb.mf   dbnsymb.sty   dbnsymb.tfm   defs.tex   index.html   index.m   index.nb   macros.tex   main.tex   makefile   new_aux   old_aux   picins.sty   refs.tex   wDuflo.aux   wDuflo.brf   wDuflo.pdf   wDufloTagged.aux   wDufloTagged.brf   wDufloTagged.pdf   wDuflo.tex   wDuflo.zip   WordCloud.png