14-240/Tutorial-November11: Difference between revisions

From Drorbn
Jump to navigationJump to search
Line 3: Line 3:
==Boris==
==Boris==


====Background====
====Coordinate and Matrix Representation Problems====


Let <math>V</math> be a finite dimensional vector space over a field <math>F</math>, <math>B = \{v_1, v_2, v_3, ..., v_n\}</math> be an ordered basis of <math>V</math> and <math>v \in V</math>. Then <math>v = \displaystyle\sum_{i=1}^{n} c_iv_i</math> where <math>c_i \in F</math>. Then the '''coordinate vector''' of <math>v</math> relative to <math>B</math>is the column vector <math> \begin{pmatrix}c_1\\c_2\\c_3\\...\\c_n\end{pmatrix}</math>.
Let <math>V</math> be a finite dimensional vector space over a field <math>F</math>, <math>B = \{v_1, v_2, v_3, ..., v_n\}</math> be an ordered basis of <math>V</math> and <math>v \in V</math>. Then <math>v = \displaystyle\sum_{i=1}^{n} c_iv_i</math> where <math>c_i \in F</math>. Then the '''coordinate vector''' of <math>v</math> relative to <math>B</math> is the column vector <math> \begin{pmatrix}c_1\\c_2\\c_3\\...\\c_n\end{pmatrix}</math>.




Line 11: Line 11:




Boris's Problems:
====Boris's Problems====




Let <math>S</math> be the standard ordered basis of <math>P_n(F)</math>.
Let <math>B</math> be the standard ordered basis of <math>P_n(F)</math> and <math>K</math> be the standard ordered basis of <math>F</math>.




'''Q1'''. What is the '''coordinate vector''' of <math>x^2 + x^5</math> relative to <math>S</math>?
'''Q1'''. What is the '''coordinate vector''' of <math>x^2 + x^5</math> relative to <math>B</math>?




'''Q2'''. Let <math>T:P_n \to F</math> be a linear transformation that is defined by <math>T(f) = f(0)</math>. What is the '''matrix representation''' of <math>T</math> in <math>S</math>?
'''Q2'''. Let <math>T:P_n \to F</math> be a linear transformation that is defined by <math>T(f(x)) = f(0)</math>. What is the '''matrix representation''' of <math>T</math> in <math>B, K</math>?

Revision as of 20:08, 29 November 2014

Boris

Background

Let be a finite dimensional vector space over a field , be an ordered basis of and . Then where . Then the coordinate vector of relative to is the column vector .


Let be a finite dimensional vector space over the same field and be an ordered basis of . Define a linear transformation . Then where . Then the matrix representation of in the ordered bases is the matrix .


Boris's Problems

Let be the standard ordered basis of and be the standard ordered basis of .


Q1. What is the coordinate vector of relative to ?


Q2. Let be a linear transformation that is defined by . What is the matrix representation of in ?