User:Tholden/11-1100/HW2 SourceCode

From Drorbn
Jump to navigationJump to search

The following is a collection of Matlab m-files used for computing quantities of the symmetric group. I apologize as these are not properly commented at this time, though this will hopefully change in the near future. However, all code that is not commented is small and easily parsed.

Generalized Least Common Multiple

Matlab has a built in least common multiple command; however, it can only take two inputs at a time. Consequently the following is a recursive algorithm for calculating the least common multiple of a several integers

function mylcm = genLCM(array)

if length(array)<2
    mylcm = array;
    return;
elseif length(array)==2
    mylcm = lcm(array(1),array(2));
    return;
else
    mylcm = lcm(array(1),genLCM(array(2:end)));
    return;
end

Computing the Orders of Elements in the Symmetric Group

function orders = compSymOrders(grpSize)

myParts = partitions(grpSize);
orders = zeros(size(myParts,1),1);

for itrow = 1:size(myParts,1)
    cycle=[];
    for itcol = 1:size(myParts,2)
        cycle = [cycle itcol*ones(1,myParts(itrow,itcol))];
    end
    orders(itrow) = genLCM(cycle);
end

Smallest Subgroup with Element of Given Order

function grpSize = smallestSymGrp(order)

answerFound=false;
grpSize = 2;
while ~answerFound && grpSize < 100
    orders = compSymOrders(grpSize);
    if ~isempty(find(orders==order, 1))
        return;
    else
        grpSize = grpSize + 1;
    end
end %end while

Partitions of an Integer

The following is a canned algorithm, available from the Mathworks website, and is not my own work:

function plist = partitions(total_sum,candidate_set,max_count,fixed_count)
% extracts the list of all partitions of a number as integer sums of a list of candidates
% usage: plist = partitions(total_sum,candidate_set)
% usage: plist = partitions(total_sum,candidate_set,max_count,fixed_count)
%
% PARTITIONS solves the money changing problem. E.g.,
% how can you make change for one dollar given coins
% of a given set of denominations. A good reference on
% the general problem is found here:
%
% http://en.wikipedia.org/wiki/Integer_partition
%
% PARTITIONS uses a recursive strategy to enumerate all
% possible partitions of the total_sum. This may be
% highly intensive for large sums or large sets of
% candidates.
% 
% arguments: (input)
%  total_sum - scalar positive integer (to be partitioned)
%
%              BEWARE! a large total_sum can easily cause
%              stack problems. For example, the number of
%              partitions of 40 is 37338, a set that took 24
%              seconds to completely enumerate on my cpu.
%
%  candidate_set - (OPTIONAL) vector of (distinct) candidate
%              positive integers for the partitions.
%
%              Efficiency considerations force me to require
%              that the candidates be sorted in non-decreasing
%              order. An error is produced otherwise.
%
%              DEFAULT: candidate_set = 1:total_sum
%
%              BEWARE! large candidate sets can easily cause
%              stack problems
%
%  max_count - (OPTIONAL) the maximum quantity of any
%              candidate in the final sum.
%
%              max_count must be either a vector of the
%              same length as candidate_set, or a scalar
%              that applies to all elements in that set.
%
%              DEFAULT = floor(total_sum./candidate_set)
%
%  fixed_count - (OPTIONAL) Allows you to specify a fixed
%              number of terms in the partitioned sum.
%
%              fixed_count must be a positive integer if
%              supplied.
%
%              DEFAULT = []
%
% arguments: (output)
%  plist - array of partitions of total_sum. This is a list
%              of the quantity of each element such that
%              plist*candidate_set(:) yields total_sum
%
%
% example: Write 9 as an integer combination of the set [1 2 4 7]
%
%  partitions(9,[1 2 4 7])
%
%  ans =
%    9     0     0     0
%   7     1     0     0
%    5     2     0     0
%    3     3     0     0
%    1     4     0     0
%    5     0     1     0
%    3     1     1     0
%    1     2     1     0
%    1     0     2     0
%    2     0     0     1
%    0     1     0     1
%
% Thus, we can write 9 = 9*1
% or 9 = 1*1 + 4*2
% or 9 = 1*2 + 1*7
% or any of 8 distinct other ways.
%
% There are 11 such ways to write 9 in terms of these
% candidates.
%
%
% example: Change a 1 dollar bill (100 cents) as an integer
%  combination of the set [1 5 10 25 50], using no more than
%  4 of any one coin denomination. Note that no pennies will
%  be allowed by the maximum constraint.
%
%  partitions(100,[1 5 10 25 50],4)
%
% ans =
%    0     4     3     2     0
%    0     2     4     2     0
%    0     3     1     3     0
%    0     1     2     3     0
%    0     0     0     4     0
%    0     4     3     0     1
%    0     2     4     0     1
%    0     3     1     1     1
%    0     1     2     1     1
%    0     0     0     2     1
%    0     0     0     0     2
%
% example: Write 13 as an integer combination of the set [2 4 6 8 10 12]
%  (Note that no such combination exists.)
%
%  partitions(13,[2 4 6 8 10 12])
%
% ans =
%   Empty matrix: 0-by-6
%
%
% example: find all possible ways to write 100 as a sum of EXACTLY 4
%  squares of the integers 1:9.
%
%  partitions(100,(1:9).^2,[],4)
% ans =
%   0    0    0    0    4    0    0    0    0
%   1    0    0    0    2    0    1    0    0
%   2    0    0    0    0    0    2    0    0
%   0    1    0    2    0    0    0    1    0
%   1    0    2    0    0    0    0    0    1
%
%
% Author: John D'Errico
% e-mail: woodchips@rochester.rr.com
% Release: 2
% Release date: 7/15/08 

% default for candidate_set
if (nargin<2) || isempty(candidate_set)
  candidate_set = 1:total_sum;
end

% how many candidates are there
n = length(candidate_set);

% error checks
if any(candidate_set<=0)
  error('All members of candidate_set must be > 0')
end
% candidates must be sorted in increasng order
if any(diff(candidate_set)<0)
  error('Efficiency requires that candidate_set be sorted')
end

% check for a max_count. do we supply a default?
if (nargin<3) || isempty(max_count)
  % how high do we need look?
  max_count = floor(total_sum./candidate_set);
elseif length(max_count)==1
  % if a scalar was provided, then turn it into a vector
  max_count = repmat(max_count,1,n);
end

% check for a fixed_count
if (nargin<4) || isempty(fixed_count)
  fixed_count = [];
elseif (fixed_count<0) || (fixed_count~=round(fixed_count))
  error('fixed_count must be a positive integer if supplied')
end

% check for degenerate cases
if isempty(fixed_count)
  if total_sum == 0
    plist = zeros(1,n);
    return
  elseif (n == 0)
    plist = [];
    return
  elseif (n == 1)
    % only one element in the set. can we form
    % total_sum from it as an integer multiple?
    p = total_sum/candidate_set;
    if (p==fix(p)) && (p<=max_count)
      plist = p;
    else
      plist = [];
    end
    return
 end
else
  % there was a fixed_count supplied
  if (total_sum == 0) && (fixed_count == 0)
    plist = zeros(1,n);
    return
  elseif (n == 0) || (fixed_count <= 0)
    plist = [];
    return
  elseif (n==1)
    % there must be a non-zero fixed_count, since
    % we did not trip the last test. since there
    % is only one candidate in the set, will it work?
    if (fixed_count*candidate_set) == total_sum
      plist = fixed_count;
    else
      plist = [];
    end
    return
  end
end

% finally, we can do some work. start with the
% largest element and work backwards
m = max_count(end);
% do we need to back off on m?
c = candidate_set(end);
m = min([m,floor(total_sum/c),fixed_count]); 

plist = zeros(0,n);
for i = 0:m
  temp = partitions(total_sum - i*c, ...
      candidate_set(1:(end-1)), ...
      max_count(1:(end-1)),fixed_count-i);
  plist = [plist;[temp,repmat(i,size(temp,1),1)]];  %#ok
end