Template
:
07-1352/Schematics of the Kontsevich Integral
From Drorbn
Jump to navigation
Jump to search
Z
0
(
K
)
=
∫
∑
m
;
t
1
<
…
<
t
m
;
P
=
{
(
z
i
,
z
i
′
)
}
(
−
1
)
#
P
↓
(
2
π
i
)
m
D
P
⋀
i
=
1
m
d
z
i
−
d
z
i
′
z
i
−
z
i
′
{\displaystyle Z_{0}(K)=\ \ \ \ \ \ \ \ \ \ \int \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\sum _{m;\ t_{1}<\ldots <t_{m};\ P=\{(z_{i},z'_{i})\}}{\frac {(-1)^{\#P_{\downarrow }}}{(2\pi i)^{m}}}D_{P}\bigwedge _{i=1}^{m}{\frac {dz_{i}-dz'_{i}}{z_{i}-z'_{i}}}}
Navigation menu
Page actions
Template
Discussion
Read
View source
History
Page actions
Template
Discussion
More
Tools
Personal tools
Log in
Navigation
Dror Bar-Natan
Wiki Home
Site News
Recent changes
Random page
Copyright/left
Help
Search
Tools
What links here
Related changes
Special pages
Printable version
Permanent link
Page information