Template:07-1352/Schematics of the Kontsevich Integral

From Drorbn
Jump to navigationJump to search
07-1352 Kontsevich Integral.png
[math]\displaystyle{ Z_0(K)=\ \ \ \ \ \ \ \ \ \ \int\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\sum_{m;\ t_1\lt \ldots\lt t_m;\ P=\{(z_i,z'_i)\}} \frac{(-1)^{\#P_{\downarrow}}}{(2\pi i)^m} D_P \bigwedge_{i=1}^{m}\frac{dz_i-dz'_i}{z_i-z'_i} }[/math]