Notes for AKT-140228/0:48:42
From Drorbn
Jump to navigation
Jump to search
Proof of the claim:
$$d(gs) = (dg)s+gds \implies (dg)s = d(gs)-gds$$
So
D
g
−
1
A
g
+
g
−
1
d
g
(
s
)
=
d
s
+
(
g
−
1
A
g
+
g
−
1
d
g
)
s
=
d
s
+
g
−
1
A
g
s
+
g
−
1
(
d
g
)
s
=
d
s
+
g
−
1
A
g
s
+
g
−
1
d
(
g
s
)
−
g
−
1
g
d
s
=
g
−
1
A
g
s
+
g
−
1
d
(
g
s
)
=
g
−
1
D
A
(
g
s
)
=
(
D
A
)
g
(
s
)
{\displaystyle {\begin{aligned}D_{g^{-1}Ag+g^{-1}dg}(s)\\&=ds+(g^{-1}Ag+g^{-1}dg)s\\&=ds+g^{-1}Ags+g^{-1}(dg)s\\&=ds+g^{-1}Ags+g^{-1}d(gs)-g^{-1}gds\\&=g^{-1}Ags+g^{-1}d(gs)\\&=g^{-1}D_{A}(gs)\\&=(D_{A})^{g}(s)\\\end{aligned}}}
Navigation menu
Page actions
Page
Discussion
Read
View source
History
Page actions
Page
Discussion
More
Tools
Personal tools
Log in
Navigation
Dror Bar-Natan
Wiki Home
Site News
Recent changes
Random page
Copyright/left
Help
Search
Tools
What links here
Related changes
Special pages
Printable version
Permanent link
Page information