07-1352/Class Notes for March 20
From Drorbn
Jump to navigationJump to search
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||
Today's Agenda. The up-to-vertex-operations uniqueness of an [math]\displaystyle{ {\mathcal A} }[/math]-valued algebraic knot theory.
- Uniqueness up to vertex operations, vaguely.
- The group [math]\displaystyle{ {\mathcal A}^V\subset {\mathcal A}(\theta) }[/math] and its action on the set [math]\displaystyle{ {\mathcal Z} }[/math] of [math]\displaystyle{ {\mathcal A} }[/math]-valued algebraic knot theories.
- An aside about trinions (also see 06-1350/Class Notes for Tuesday October 10).
- The group [math]\displaystyle{ {\mathcal A}^F\subset {\mathcal A}(\uparrow_2) }[/math] and its action on the set of all associators.
- An aside about braided [math]\displaystyle{ \theta }[/math]-graphs:
- A degree-by-degree construction of a twistor F and the reduction to homology.
- Computing the homology using unitrivalent graphs and black boxes.
- Return to the PBW theorem.