Notes for AKT-091001-2/0:42:00
From Drorbn
Jump to navigationJump to search
If [math]\displaystyle{ R_1, R_2 }[/math] are representations of [math]\displaystyle{ \mathcal{G} }[/math], then so is [math]\displaystyle{ R_1 \oplus R_2 }[/math] and [math]\displaystyle{ R_1 \otimes R_2 }[/math] (here [math]\displaystyle{ R_1, R_2 }[/math] denotes the vector space s.t. [math]\displaystyle{ End(R) }[/math] is the target space of [math]\displaystyle{ R }[/math])