Notes for AKT-090917-1/0:20:08
From Drorbn
Jump to navigationJump to search
Def: Knot invariant [math]\displaystyle{ V }[/math] is of Vassiliev type [math]\displaystyle{ m }[/math] if [math]\displaystyle{ V^{m+1} = 0 }[/math] (on the whole space of [math]\displaystyle{ m+1 }[/math]-singular knots) Notation: we drop the superscript in [math]\displaystyle{ V^{(m)} }[/math] since for each [math]\displaystyle{ m }[/math], [math]\displaystyle{ V^{(m)} }[/math] is only defined for [math]\displaystyle{ m }[/math]-singular knots.