09-240/Classnotes for Thursday September 10

From Drorbn
Revision as of 14:42, 12 September 2009 by C8sd (talk | contribs) (→‎Date: Thurs. Sept. 10, 2009: format)
Jump to navigationJump to search

Date: Thurs. Sept. 10, 2009

  • Professor's name: Dror Bar-Natan
  • Solve systems of equations

[math]\displaystyle{ 5x_{1} - 2x_{2} + x_{3} = 9 }[/math] [math]\displaystyle{ -x_{1} + x_{2} - x_{3} = 2 }[/math] [math]\displaystyle{ 2x_{1} + 9x_{2} - 3x_{3} = -4 }[/math]

  • how? when? one/many?
  • This describes the small scale behaviour of almost everthing that has a mathematical description.


1. A matrix is a square or rectangular array of numbers.

[math]\displaystyle{ \begin{pmatrix} 5 & -2 & 1\\ -1 & 1 & -1\\ 2 & 9 & -3 \end{pmatrix} }[/math]
  • we will learn addition, multiplication, and powers of matrices
[math]\displaystyle{ \mathbf{A}=\begin{pmatrix} 5 & -2 & 1\\ -1 & 1 & -1\\ 2 & 9 & -3 \end{pmatrix}, \mathbf{B}=\cdots }[/math]
[math]\displaystyle{ \begin{pmatrix} 5 & -2 & 1\\ -1 & 1 & -1\\ 2 & 9 & -3 \end{pmatrix}+\mathbf{B} }[/math]

[math]\displaystyle{ \mathbf{AB} \neq \mathbf{BA} }[/math]

[math]\displaystyle{ \mathbf{A}^{2009} }[/math]

  • describes the approximate long-term behaviour of almost anything...
  • Do all this without choosing coordinates.


2. Do everything over other “systems of numbers”

  1. real numbers
  2. rational numbers
  3. complex numbers (things like alternating current, circuit)
  4. {0,1} (binary, computer science)

3. Hidden Agenda

  • Learn the basic pure-math processes of: abstraction, generalizations, definitions, theorems, proofs, notation logic


4. Administration

  • can add things to wiki (so long as relevant to course material)
  • any page added to wiki must start with 09-240- or 09-240/
  • HW assigned on Tuesday, due in tutorial 9 days later.
  • HW graded and returned by following tutorial


5. Classwork done today

  • The Real Numbers: a set [math]\displaystyle{ \mathbb{R} }[/math] with two binary operations [math]\displaystyle{ \,\!+ }[/math], [math]\displaystyle{ \times }[/math](2 inputs, one output) and also with two distinguished elements [math]\displaystyle{ 0,1\epsilon\mathbb{R} }[/math] with the following properties:

R1 [math]\displaystyle{ \forall a,b }[/math]

  1. [math]\displaystyle{ \,\!a + b = b + a }[/math]
  2. [math]\displaystyle{ a \cdot b=b \cdot a }[/math]

Aside: The [math]\displaystyle{ \perp }[/math] character used for additon:

  • Prof. Dror asked why [math]\displaystyle{ + }[/math] is sometimes written as [math]\displaystyle{ \perp }[/math]?