User:Shawkm/06-1350-HW4

From Drorbn
Revision as of 19:34, 2 December 2006 by Shawkm (talk | contribs)
Jump to navigationJump to search

The Generators

Our generators are [math]\displaystyle{ T }[/math], [math]\displaystyle{ R }[/math], [math]\displaystyle{ \Phi }[/math] and [math]\displaystyle{ B^{\pm} }[/math]:

Picture 06-1350-BPlus.svg
Generator [math]\displaystyle{ T }[/math] [math]\displaystyle{ R }[/math] [math]\displaystyle{ \Phi }[/math] [math]\displaystyle{ B^+ }[/math] [math]\displaystyle{ B^- }[/math]
Perturbation [math]\displaystyle{ t }[/math] [math]\displaystyle{ r }[/math] [math]\displaystyle{ \varphi }[/math] [math]\displaystyle{ b^+ }[/math] [math]\displaystyle{ b^- }[/math]

The Relations

The Reidemeister Move R3

The picture (with three sides of the shielding removed) is

06-1350-R4.svg

In formulas, this is

[math]\displaystyle{ (1230)^\star B^+ (1213)^\star B^+ (1023)^\star B^+ = (1123)^\star B^+ (1203)^\star B^+ (1231)^\star B^+ }[/math].

Linearized and written in functional form, this becomes

[math]\displaystyle{ \rho_3(x_1, x_2, x_3, x_4) = }[/math] [math]\displaystyle{ b^+(x_1,x_2,x_3) + b^+(x_1+x_3,x_2,x_4) + b^+(x_1,x_3,x_4) }[/math]
[math]\displaystyle{ - b^+(x_1+x_2,x_3,x_4) - b^+(x_1,x_2,x_4) - b^+(x_1+x_4,x_2,x_3). }[/math]

The Syzygies

The "B around B" Syzygy

The picture, with all shielding removed, is

06-1350-BAroundB.svg
(Drawn with Inkscape)
(note that lower quality pictures are also acceptable)

The functional form of this syzygy is

[math]\displaystyle{ BB(x_1,x_2,x_3,x_4,x_5) = }[/math] [math]\displaystyle{ \rho_3(x_1, x_2, x_3, x_5) + \rho_3(x_1 + x_5, x_2, x_3, x_4) - \rho_3(x_1 + x_2, x_3, x_4, x_5) }[/math]
[math]\displaystyle{ - \rho_3(x_1, x_2, x_4, x_5) - \rho_3(x_1 + x_4, x_2, x_3, x_5) - \rho_3(x_1, x_2, x_3, x_4) }[/math]
[math]\displaystyle{ + \rho_3(x_1, x_3, x_4, x_5) + \rho_3(x_1 + x_3, x_2, x_4, x_5). }[/math]

A Mathematica Verification

The following simulated Mathematica session proves that for our single relation and single syzygy, [math]\displaystyle{ d^2=0 }[/math]. Copy paste it into a live Mathematica session to see that it's right!

In[1]:= d1 = { rho3[x1_, x2_, x3_, x4_] :> bp[x1, x2, x3] + bp[x1 + x3, x2, x4] + bp[x1, x3, x4] - bp[x1 + x2, x3, x4] - bp[x1, x2, x4] - bp[x1 + x4, x2, x3] }; d2 = { BAroundB[x1_, x2_, x3_, x4_, x5_] :> rho3[x1, x2, x3, x5] + rho3[x1 + x5, x2, x3, x4] - rho3[x1 + x2, x3, x4, x5] - rho3[x1, x2, x4, x5] - rho3[x1 + x4, x2, x3, x5] - rho3[x1, x2, x3, x4] + rho3[x1, x3, x4, x5] + rho3[x1 + x3, x2, x4, x5] };
In[3]:= BAroundB[x1, x2, x3, x4, x5] /. d2
Out[3]= - rho3[x1, x2, x3, x4] + rho3[x1, x2, x3, x5] - rho3[x1, x2, x4, x5] + rho3[x1, x3, x4, x5] - rho3[x1 + x2, x3, x4, x5] + rho3[x1 + x3, x2, x4, x5] - rho3[x1 + x4, x2, x3, x5] + rho3[x1 + x5, x2, x3, x4]
In[4]:= BAroundB[x1, x2, x3, x4, x5] /. d2 /. d1
Out[4]= 0


Here Goes Something New(?)

The first thing to notice is that the relation [math]\displaystyle{ \rho_3 }[/math] holds for [math]\displaystyle{ b^+ }[/math] and [math]\displaystyle{ b^- }[/math] so we have another version:

[math]\displaystyle{ \rho_3(x_1, x_2, x_3, x_4) = }[/math] [math]\displaystyle{ b^-(x_1,x_2,x_3) + b^-(x_1+x_3,x_2,x_4) + b^-(x_1,x_3,x_4) }[/math]
[math]\displaystyle{ - b^-(x_1+x_2,x_3,x_4) - b^-(x_1,x_2,x_4) - b^-(x_1+x_4,x_2,x_3). }[/math]

This is probably a completely trivial remark, and it is also trivial to see that mathematica will deal with this in the same way as for [math]\displaystyle{ b^+ }[/math] so I won't verify that [math]\displaystyle{ d^2 =0 }[/math].


What I will do now is linearize and write down in functional form the relation R2

[math]\displaystyle{ \rho_2(x_1, x_2, x_3) = }[/math] [math]\displaystyle{ b^+(x_1,x_2,x_3) + b^-(x_1,x_3,x_2) }[/math]

or

[math]\displaystyle{ \rho_2(x_1, x_2, x_3) = }[/math] [math]\displaystyle{ b^-(x_1,x_2,x_3) + b^+(x_1,x_3,x_2) }[/math]