06-240/Classnotes For Tuesday October 3

From Drorbn
Revision as of 17:34, 7 October 2006 by Mc (talk | contribs) (Lecture Notes (MC))
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search



Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =b_{11}\left(\frac{1}{3}\left(N_1+N_2+N_3+N_4\right)-3N_1\right)+\ldots}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\mbox{ a linear combination of }N_1^{},N_2,N_3,N_4}


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mbox{Proof of 3}{}_{}^{}}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mbox{Indeed in }a_1^{}M_1+a_2M_2+a_3M_3= \begin{pmatrix}a_1&a_2\\a_3&0\end{pmatrix}\mbox{ lower right corner is always } 0 }

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mbox{for example }\begin{pmatrix}240&157\\e&\pi\end{pmatrix}\mbox{ not in span.}}


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mbox{Proof of 4}{}_{}^{}}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_1^{}N_1+a_2N_2+a_3N_3=\begin{pmatrix}a_2+a_3&a_1+a_3\\a_1+a_2&a_1+a_2+a_3\end{pmatrix}}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{pmatrix}240&157\\e&\pi\end{pmatrix}\mbox{ is equal? } \begin{cases}240=a_2+a_3\\157=a_1+a_3\\e=a_1+a_2\\\pi=a_1+a_2+a_3\end{cases}\Rightarrow\mbox{No solution}}


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S\subset V\mbox{ is linearly dependent if it is wasteful,}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mbox{i.e. if }\exists v\in V\mbox{ such that }\exists a_1^{}\ldots a_n\in F \mbox{ and }u_1^{}\ldots u_2\in S} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mbox{ and }\exists b_1^{}\ldots b_m\in F \mbox{ and }w_1\ldots w_m\in S}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mbox{so that }\sum_{i=1}^na_iu_i=v=\sum_{i=1}^mb_iw_i}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum a_iu_i-\sum b_iw_i=0}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mbox{can be represented as }\sum c_iz_i=0}


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mbox{Definition}{}_{}^{}}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S\subset V\mbox{ is called linearly dependent if you can find }} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z_1^{}\ldots z_n\in S\mbox{ different from each other and }c_1^{}\ldots c_n\in F\mbox{ so that not all of which are } 0,} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mbox{so that }\sum c_iz_i=0 \mbox{ otherwise, }S\mbox{ is called linearly independent}}


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mbox{Example 1}{}_{}^{}}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mbox{In }\mathbb{R}, S= \lbrace\begin{pmatrix}1&2&3\end{pmatrix}, \begin{pmatrix}4&5&6\end{pmatrix}, \begin{pmatrix}7&8&9\end{pmatrix}\rbrace\mbox{ is linearly dependent}}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1\cdot\begin{pmatrix}1&2&3\end{pmatrix}- 2\cdot\begin{pmatrix}4&5&6\end{pmatrix}+ 1\cdot\begin{pmatrix}7&8&9\end{pmatrix}=0}


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mbox{Example 2}{}_{}^{}}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{R}^n, e_i=\begin{pmatrix}0\\\vdots\\1\\\vdots\\0\end{pmatrix}i^{th}\mbox{ row}}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S=\lbrace e_1^{},\ldots,e_n\rbrace}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mbox{Claim }S\mbox{ is linearly independent}{}_{}^{}}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{pmatrix}0\\\vdots\\0\end{pmatrix}=0 =\sum_{i=1}^na_ie_i =\begin{pmatrix}a_1\\a_2\\\vdots\\a_n\end{pmatrix}\Rightarrow \begin{matrix}a_1=0\\a_2=0\\\vdots\\a_n=0\end{matrix}}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mbox{not not all }a_i^{}\mbox{ are }0\Rightarrow \mbox{ not linearly dependent.}}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mbox{Claim }S\subset V\mbox{ is linearly independent iff whenever }\sum a_iu_i=0 \mbox{ and distinct }u_i\in S\mbox{ then }\forall i\quad a_i=0}


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mbox{Comments}{}_{}^{}}

  1. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \emptyset\subset V\mbox{ is linearly independent}}
  2. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mbox{Suppose }u\in V,\quad \lbrace u\rbrace\mbox{ the singleton set is linearly independent iff }u_{}^{}\neq 0}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lbrace0\rbrace\mbox{ is linearly dependent. example }7\cdot0=0}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mbox{if }u\neq0\mbox{ assume }a\cdot u=0\mbox{, and }a\neq0\Rightarrow a_{}^{-1}au=0 \Rightarrow u=0\mbox{ contradiction results, so no such }a\mbox{ exists.}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mbox{ So}{}_{}^{}\lbrace u\rbrace\mbox{is not linearly dependent, hence it is linearly independent.}}