06-240/Classnotes For Thursday, September 28
Linear Combination
Definition: Let (ui) = (u1, u2, ..., un) be a sequence of vectors in V. A sum of the form
- ai [math]\displaystyle{ \in }[/math] F, [math]\displaystyle{ \sum_{i=1}^n }[/math] aiui = a1u1 + a2u2+ ... +anun
is called a "Linear Combination" of the ui.
Span
span(ui):= The set of all possible linear combinations of the ui's.
If [math]\displaystyle{ \mathcal{S} \subseteq }[/math] V is any subset,
| span [math]\displaystyle{ \mathcal{S} }[/math] | := The set of all linear combination of vectors in [math]\displaystyle{ \mathcal{S} }[/math] |
| =[math]\displaystyle{ \left \{ \sum_{i=0}^n a_i u_i, a_i \in \mbox{F}, u_i \in \mathcal{S} \right \} \ni 0 }[/math] |
even if [math]\displaystyle{ \mathcal{S} }[/math] is empty.
Theorem: For any [math]\displaystyle{ \mathcal{S} \subseteq }[/math] V, span [math]\displaystyle{ \mathcal{S} }[/math] is a subspace of V.
Proof:
1. 0 [math]\displaystyle{ \in }[/math] span [math]\displaystyle{ \mathcal{S} }[/math].
2. Let x [math]\displaystyle{ \in }[/math] span [math]\displaystyle{ \mathcal{S} }[/math], Let x [math]\displaystyle{ \in }[/math] span [math]\displaystyle{ \mathcal{S} }[/math],
[math]\displaystyle{ \Rightarrow }[/math] x = [math]\displaystyle{ \sum_{i=1}^n }[/math] aiui, ui [math]\displaystyle{ \in \mathcal{S} }[/math], y = [math]\displaystyle{ \sum_{i=1}^m }[/math] bivi, vi [math]\displaystyle{ \in \mathcal{S} }[/math].
[math]\displaystyle{ \Rightarrow }[/math] x+y = [math]\displaystyle{ \sum_{i=1}^n }[/math] aiui + [math]\displaystyle{ \sum_{i=1}^m }[/math] bivi = [math]\displaystyle{ \sum_{i=1}^{m+n} }[/math] ciwi where ci=(a1, a2,...,an, b1, b2,...,bm) and wi=ci=(u1, u2,...,un, v1, v2,...,vm).
3. cx= c[math]\displaystyle{ \sum_{i=1}^n }[/math] aiui=[math]\displaystyle{ \sum_{i=1}^n }[/math] (cai)ui[math]\displaystyle{ \in }[/math] span [math]\displaystyle{ \mathcal{S} }[/math].
Example
1. Let P3([math]\displaystyle{ \Re }[/math])={ax3+bx2+cx+d}[math]\displaystyle{ \subseteq }[/math]P([math]\displaystyle{ \Re }[/math]), a, b, c, d, [math]\displaystyle{ \in \Re }[/math].
u1=x3-2x2-5x-3
u2=3x3-5x2-4x-9
v=2x3-2x2+12x-6
Let W=spab(u1, u2),
Does v [math]\displaystyle{ \in }[/math] W?
v is in W if v=a1u1+a1u2
for some a1, a2 [math]\displaystyle{ \in \Re }[/math].
If [math]\displaystyle{ \exists }[/math] a1, a2 [math]\displaystyle{ \in \Re }[/math],
| 2x3-2x2+12x-6 | = a1(x-2x2-5x-3) + a2(3x3-5x2-4x-9) | |
| =(a1+3a2)x3 + (-2a1 -5a2)x2 + (-5a1-4a2)x + (-3a1-9a2) | ||
[math]\displaystyle{ \Leftrightarrow }[/math]2
|
=a1+3a2 | |
-2
|
=-2a1-5a2 | |
12
|
=-5a1-4a2 | |
-6
|
=-3a1-9a2 |
Solve the four equations above and we will get a1=-4 and a2=2.
Check if a1=-4 and a2=2 hold for all the 4 equations.
Since it's hold, [math]\displaystyle{ \Rightarrow }[/math] v [math]\displaystyle{ \in }[/math] W.