14-240/Classnotes for Monday September 15

From Drorbn
Revision as of 11:03, 15 September 2014 by Yue.Jiang (talk | contribs)
Jump to navigationJump to search

Definition:

           Subtract: if Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a , b }
 belong to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F , a - b = a + (-b)}
.
           Divition: if Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a , b }
 belong to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F , a / b = a * (b }
to the power Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (-1)}
.

Theorem:

        8. For every  belongs to F , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a * 0 = 0}
.
                   proof of 8: By F3 , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a * 0 = a * (0 + 0)}
;
                               By F5 , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a * (0 + 0) = a * 0 + a * 0}
;
                               By F3 , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a * 0 = 0 + a * 0}
;
                               By Thm P1 ,Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0 = a * 0}
.
       
        9. There not exists Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b}
 belongs to F s.t. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0 * b = 1}
;
           For every Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b}
 belongs to F s.t. is not equal to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1}
.
                   proof of 9: By F3 , is not equal to .
       
       10. .
     
       11. .
      
       12. .
                   proof of 12: <= : By P8 , if  , then ;
                                     By P8 , if  , then .
                                => : Assume  , if a = 0 we have done;
                                     Otherwise , by P8 ,  is not equal to and we have ;  
                                                 by cancellation (P2) , .
       

.

        proof: By F5 , 

Theorem :

        There exists !(unique)   s.t.
              1. ;
              2. For every  belong to  , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle iota(m+n) = iota(m) + iota(n)}
;
              3. >For every  belong to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z}
 , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle iota(m*n) = iota(m) * iota(n)}
.
        iota(2) = iota(1+1) = iota(1) + iota(1) = 1 + 1;
        iota(3) = iota(2+1) = iota(2) + iota(1) = iota(2) + 1; 
        ......                                                                          
     
        In F2 , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 27 ----> iota(27) = iota(26 + 1)                                          = iota(26) + iota(1)                                          = iota(26) + 1                                          = iota(13 * 2) + 1                                          = iota(2) * iota(13) + 1                                          = (1 + 1) * iota(13) + 1                                          = 0 * iota(13) + 1                                          = 1}