#
|
Week of...
|
Links
|
1
|
Jan 10
|
About, Notes, HW1
|
2
|
Jan 17
|
HW2, Notes
|
3
|
Jan 24
|
HW3, Photo, Notes
|
4
|
Jan 31
|
HW4, Notes
|
5
|
Feb 7
|
HW5, Notes
|
6
|
Feb 14
|
On TT, Notes
|
R
|
Feb 21
|
Reading week
|
7
|
Feb 28
|
Term Test
|
8
|
Mar 7
|
HW6, Notes
|
9
|
Mar 14
|
HW7, Notes
|
10
|
Mar 21
|
HW8, E8, Notes
|
11
|
Mar 28
|
HW9, Notes
|
12
|
Apr 4
|
HW10, Notes
|
13
|
Apr 11
|
Notes, PM
|
S
|
Apr 16-20
|
Study Period
|
F
|
Apr 24
|
Final
|
Add your name / see who's in!
|
Register of Good Deeds
|
|
In Preparation
The information below is preliminary and cannot be trusted! (v)
The goal of today's class is to prove (a weak but strong enough) form of the Fundamental Theorem of Galois Theory as follows:
Theorem. Let be a field of characteristic 0 and let be a splitting field over . Then there is a correspondence between the set of intermediate field extensions lying between and and the set of subgroups of the Galois group of the original extension :
.
The bijection is given by mapping every intermediate extension to the subgroup of elements in that preserve ,
,
and reversely, by mapping every subgroup of to its fixed field :
.
Furthermore, this correspondence has the following further properties:
- It is inclusion-reversing: if then and if then .
- It is degree/index respecting: and .
- Splitting fields correspond to normal subgroups: If in is a splitting field then is normal in and .