07-1352/Class Notes for February 6
From Drorbn
Jump to navigationJump to search
|
In Preparation
The information below is preliminary and cannot be trusted! (v)
Today's Agenda
- A bit about genus, finite type invariants and the Alexander polynomial.
Genus and the Alexander Polynomial
In[1]:=
|
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[2]:=
|
Ks = Select[AllKnots[], ThreeGenus[#] == 1 &]
|
KnotTheory::credits: The 3-genus data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[2]=
|
{Knot[3, 1], Knot[4, 1], Knot[5, 2], Knot[6, 1], Knot[7, 2],
Knot[7, 4], Knot[8, 1], Knot[8, 3], Knot[9, 2], Knot[9, 5], Knot[9, 35],
Knot[9, 46],Knot[10, 1], Knot[10, 3], Knot[11, Alternating, 247],
Knot[11, Alternating, 343], Knot[11, Alternating, 362], Knot[11, Alternating, 363],
Knot[11, NonAlternating, 139], Knot[11, NonAlternating, 141]}
|
In[3]:=
|
Conway[#][z] & /@ Ks
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[3]=
|
{1+z^2, 1-z^2, 1+2z^2, 1-2z^2, 1+3z^2, 1+4z^2, 1-3z^2, 1-4z^2,
1+4z^2, 1+6z^2, 1+7z^2, 1-2z^2, 1-4z^2, 1-6z^2, 1+5z^2, 1+8z^2, 1+10z^2, 1+9z^2,
1-2z^2, 1-5z^2}
|