|
|
Line 38: |
Line 38: |
|
# <math>\,\!F_7 = \{ 0, 1,2,3,4,5,6 \}</math> |
|
# <math>\,\!F_7 = \{ 0, 1,2,3,4,5,6 \}</math> |
|
# <math>\,\!F_6 = \{ 0, 1,2,3,4,5 \}</math> is not a field (counterexample) |
|
# <math>\,\!F_6 = \{ 0, 1,2,3,4,5 \}</math> is not a field (counterexample) |
|
|
|
|
|
{| |
|
|
| |
|
|
{| border="1" cellspacing="0" |
|
|
|+ Ex. 4 |
|
|
|- |
|
|
! + !! 0 !! 1 |
|
|
|- |
|
|
! 0 || 0 || 1 |
|
|
|- |
|
|
! 1 || 1 || 0 |
|
|
|- |
|
|
|} |
|
|
|
|
|
| |
|
|
{| border="1" cellspacing="0" |
|
|
|+ Ex. 4 |
|
|
|- |
|
|
! × !! 0 !! 1 |
|
|
|- |
|
|
! 0 || 0 || 0 |
|
|
|- |
|
|
! 1 || 0 || 1 |
|
|
|} |
|
|
|
|
|
|- |
|
|
| |
|
|
{| border="1" cellspacing="0" |
|
|
|+ Ex. 5 |
|
|
|- |
|
|
! + !! 0 !! 1 !! 2 !! 3 !! 4 !! 5 !! 6 |
|
|
|- |
|
|
! 0 || 0 || 1 || 2 || 3 || 4 || 5 || 6 |
|
|
|- |
|
|
! 1 || 1 || 2 || 3 || 4 || 5 || 6 || 0 |
|
|
|- |
|
|
! 2 || 2 || 3 || 4 || 5 || 6 || 0 || 1 |
|
|
|- |
|
|
! 3 || 3 || 4 || 5 || 6 || 0 || 1 || 2 |
|
|
|- |
|
|
! 4 || 4 || 5 || 6 || 0 || 1 || 2 || 3 |
|
|
|- |
|
|
! 5 || 5 || 6 || 0 || 1 || 2 || 3 || 4 |
|
|
|- |
|
|
! 6 || 6 || 0 || 1 || 2 || 3 || 4 || 5 |
|
|
|} |
|
|
|
|
|
| |
|
|
{|border="1" cellspacing="0" |
|
|
|+ Ex. 5 |
|
|
|- |
|
|
! × !! 0 !! 1 !! 2 !! 3 !! 4 !! 5 !! 6 |
|
|
|- |
|
|
! 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 |
|
|
|- |
|
|
! 1 || 0 || 1 || 2 || 3 || 4 || 5 || 0 |
|
|
|- |
|
|
! 2 || 0 || 2 || 4 || 6 || 1 || 3 || 1 |
|
|
|- |
|
|
! 3 || 0 || 3 || 6 || 2 || 5 || 1 || 2 |
|
|
|- |
|
|
! 4 || 0 || 4 || 1 || 5 || 2 || 6 || 3 |
|
|
|- |
|
|
! 5 || 0 || 5 || 3 || 1 || 6 || 4 || 4 |
|
|
|- |
|
|
! 6 || 0 || 6 || 5 || 4 || 3 || 2 || 5 |
|
|
|} |
|
|
|} |
|
|
|
|
'''Theorem''': <math>\,\!F_P </math> for <math>p>1</math> is a field ''iff'' <small>([http://en.wikipedia.org/wiki/If_and_only_if if and only if])</small> <math>p</math> is a prime number |
|
'''Theorem''': <math>\,\!F_P </math> for <math>p>1</math> is a field ''iff'' <small>([http://en.wikipedia.org/wiki/If_and_only_if if and only if])</small> <math>p</math> is a prime number |
|
|
|
|
The real numbers A set with two binary operators and two special elements s.t.
- Note: or means inclusive or in math.
Definition: A field is a set F with two binary operators : F×F → F, : F×F → F and two elements s.t.
Examples
-
- is not a field (counterexample)
|
|
Ex. 5
+ |
0 |
1 |
2 |
3 |
4 |
5 |
6
|
0 |
0 |
1 |
2 |
3 |
4 |
5 |
6
|
1 |
1 |
2 |
3 |
4 |
5 |
6 |
0
|
2 |
2 |
3 |
4 |
5 |
6 |
0 |
1
|
3 |
3 |
4 |
5 |
6 |
0 |
1 |
2
|
4 |
4 |
5 |
6 |
0 |
1 |
2 |
3
|
5 |
5 |
6 |
0 |
1 |
2 |
3 |
4
|
6 |
6 |
0 |
1 |
2 |
3 |
4 |
5
|
|
Ex. 5
× |
0 |
1 |
2 |
3 |
4 |
5 |
6
|
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0
|
1 |
0 |
1 |
2 |
3 |
4 |
5 |
0
|
2 |
0 |
2 |
4 |
6 |
1 |
3 |
1
|
3 |
0 |
3 |
6 |
2 |
5 |
1 |
2
|
4 |
0 |
4 |
1 |
5 |
2 |
6 |
3
|
5 |
0 |
5 |
3 |
1 |
6 |
4 |
4
|
6 |
0 |
6 |
5 |
4 |
3 |
2 |
5
|
|
Theorem: for is a field iff (if and only if) is a prime number
Tedious Theorem
- "cancellation property"
...