07-401/Class Notes for March 7: Difference between revisions

From Drorbn
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
{{07-401/Navigation}}
{{07-401/Navigation}}
{{In Preparation}}


==Class Plan==
==Class Plan==
Line 20: Line 19:
'''Definition.''' <math>F(a_1,\ldots,a_n)</math>.
'''Definition.''' <math>F(a_1,\ldots,a_n)</math>.


'''Theorem.''' If <math>a</math> is a root of an irreducible polynomial <math>p\in F[x]</math>, within some extension field <math>E</math> of <math>F</math>, then <math>F(a)\cong F[a]/\langle p\rangle</math>, and <math>\{1,a,a^2,\ldots,a^{n-1}\}</math> (here <math>n=\deg p</math>) is a basis for <math>F(a)</math> over <math>F</math>.
'''Theorem.''' If <math>a</math> is a root of an irreducible polynomial <math>p\in F[x]</math>, within some extension field <math>E</math> of <math>F</math>, then <math>F(a)\cong F[x]/\langle p\rangle</math>, and <math>\{1,a,a^2,\ldots,a^{n-1}\}</math> (here <math>n=\deg p</math>) is a basis for <math>F(a)</math> over <math>F</math>.


'''Corollary.''' In this case, <math>F(a)</math> depends only on <math>p</math>.
'''Corollary.''' In this case, <math>F(a)</math> depends only on <math>p</math>.
Line 36: Line 35:
'''Theorem.''' Any two splitting fields for <math>f\in F[x]</math> over <math>F</math> are isomorphic.
'''Theorem.''' Any two splitting fields for <math>f\in F[x]</math> over <math>F</math> are isomorphic.


'''Lemma 1.''' If <math>p\in F[x]</math> irreducible over <math>F</math>, <math>\phi:F\to F'</math> an isomorphism, <math>a</math> a root of <math>p</math> (in some <math>E/F</math>), <math>a'</math> a root of <math>\phi(p)</math> in some <math>E'/F'</math>, then <math>F[a]\cong F'[a']</math>.
'''Lemma 1.''' If <math>p\in F[x]</math> irreducible over <math>F</math>, <math>\phi:F\to F'</math> an isomorphism, <math>a</math> a root of <math>p</math> (in some <math>E/F</math>), <math>a'</math> a root of <math>\phi(p)</math> in some <math>E'/F'</math>, then <math>F(a)\cong F'(a')</math>.


'''Lemma 2.''' Isomorphisms can be extended to splitting fields.
'''Lemma 2.''' Isomorphisms can be extended to splitting fields.
Line 47: Line 46:


'''Theorem.''' <math>f\in F[x]</math> has a multiple zero in some extension field of <math>F</math> iff <math>f</math> and <math>f'</math> have a common factor of positive degree.
'''Theorem.''' <math>f\in F[x]</math> has a multiple zero in some extension field of <math>F</math> iff <math>f</math> and <math>f'</math> have a common factor of positive degree.

'''Lemma.''' The property of "being relatively prime" is preserved under extensions.


'''Theorem.''' Let <math>f\in F[x]</math> be irreducible. If <math>\operatorname{char}F=0</math>, then <math>f</math> has no multiple zeros in any extension of <math>F</math>. If <math>\operatorname{char}F=p>0</math>, then <math>f</math> has multiple zeros (in some extension) iff it is of the form <math>g(x^p)</math> for some <math>g\in F[x]</math>.
'''Theorem.''' Let <math>f\in F[x]</math> be irreducible. If <math>\operatorname{char}F=0</math>, then <math>f</math> has no multiple zeros in any extension of <math>F</math>. If <math>\operatorname{char}F=p>0</math>, then <math>f</math> has multiple zeros (in some extension) iff it is of the form <math>g(x^p)</math> for some <math>g\in F[x]</math>.

Revision as of 16:41, 7 March 2007


Class Plan

Some discussion of the term test and HW6.

Some discussion of our general plan.

Extension Fields

Definition. An extension field [math]\displaystyle{ E }[/math] of [math]\displaystyle{ F }[/math].

Theorem. For every non-constant polynomial [math]\displaystyle{ f }[/math] in [math]\displaystyle{ F[x] }[/math] there is an extension [math]\displaystyle{ E }[/math] of [math]\displaystyle{ F }[/math] in which [math]\displaystyle{ f }[/math] has a zero.

Example [math]\displaystyle{ x^2+1 }[/math] over [math]\displaystyle{ {\mathbb R} }[/math].

Example [math]\displaystyle{ x^5+2x^2+2x+2=(x^2+1)(x^3+2x+2) }[/math] over [math]\displaystyle{ {\mathbb Z}/3 }[/math].

Definition. [math]\displaystyle{ F(a_1,\ldots,a_n) }[/math].

Theorem. If [math]\displaystyle{ a }[/math] is a root of an irreducible polynomial [math]\displaystyle{ p\in F[x] }[/math], within some extension field [math]\displaystyle{ E }[/math] of [math]\displaystyle{ F }[/math], then [math]\displaystyle{ F(a)\cong F[x]/\langle p\rangle }[/math], and [math]\displaystyle{ \{1,a,a^2,\ldots,a^{n-1}\} }[/math] (here [math]\displaystyle{ n=\deg p }[/math]) is a basis for [math]\displaystyle{ F(a) }[/math] over [math]\displaystyle{ F }[/math].

Corollary. In this case, [math]\displaystyle{ F(a) }[/math] depends only on [math]\displaystyle{ p }[/math].

Splitting Fields

Definition. [math]\displaystyle{ f\in F[x] }[/math] splits in [math]\displaystyle{ E/F }[/math], a splitting field for [math]\displaystyle{ f }[/math] over [math]\displaystyle{ F }[/math].

Theorem. A splitting field always exists.

Example. [math]\displaystyle{ x^4-x^2-2=(x^2-2)(x^2+1) }[/math] over [math]\displaystyle{ {\mathbb Q} }[/math].

Example. Factor [math]\displaystyle{ x^2+x+2\in{\mathbb Z}_3[x] }[/math] within its splitting field [math]\displaystyle{ {\mathbb Z}_3[x]/\langle x^2+x+2\rangle }[/math].

Theorem. Any two splitting fields for [math]\displaystyle{ f\in F[x] }[/math] over [math]\displaystyle{ F }[/math] are isomorphic.

Lemma 1. If [math]\displaystyle{ p\in F[x] }[/math] irreducible over [math]\displaystyle{ F }[/math], [math]\displaystyle{ \phi:F\to F' }[/math] an isomorphism, [math]\displaystyle{ a }[/math] a root of [math]\displaystyle{ p }[/math] (in some [math]\displaystyle{ E/F }[/math]), [math]\displaystyle{ a' }[/math] a root of [math]\displaystyle{ \phi(p) }[/math] in some [math]\displaystyle{ E'/F' }[/math], then [math]\displaystyle{ F(a)\cong F'(a') }[/math].

Lemma 2. Isomorphisms can be extended to splitting fields.

Zeros of Irreducible Polynomials

Definition. The derivative of a polynomial.

Claim. The derivative operation is linear and satisfies Leibnitz's law.

Theorem. [math]\displaystyle{ f\in F[x] }[/math] has a multiple zero in some extension field of [math]\displaystyle{ F }[/math] iff [math]\displaystyle{ f }[/math] and [math]\displaystyle{ f' }[/math] have a common factor of positive degree.

Lemma. The property of "being relatively prime" is preserved under extensions.

Theorem. Let [math]\displaystyle{ f\in F[x] }[/math] be irreducible. If [math]\displaystyle{ \operatorname{char}F=0 }[/math], then [math]\displaystyle{ f }[/math] has no multiple zeros in any extension of [math]\displaystyle{ F }[/math]. If [math]\displaystyle{ \operatorname{char}F=p\gt 0 }[/math], then [math]\displaystyle{ f }[/math] has multiple zeros (in some extension) iff it is of the form [math]\displaystyle{ g(x^p) }[/math] for some [math]\displaystyle{ g\in F[x] }[/math].

Definition. A perfect field.

Theorem. A finite field is perfect.

Theorem. An irreducible polynomial over a perfect field has no multiple zeros (in any extension).

Theorem. Let [math]\displaystyle{ f\in F[x] }[/math] be irreducible and let [math]\displaystyle{ E }[/math] be the splitting field of [math]\displaystyle{ f }[/math] over [math]\displaystyle{ F }[/math]. Then in [math]\displaystyle{ E }[/math] all zeros of [math]\displaystyle{ f }[/math] have the same multiplicity.

Corollary. [math]\displaystyle{ f }[/math] as above must have the form [math]\displaystyle{ a(x-a_1)^n\cdots(x-a_k)^n }[/math] for some [math]\displaystyle{ a\in F }[/math] and [math]\displaystyle{ a_1,\ldots,a_k\in E }[/math].

Example. [math]\displaystyle{ x^2-t\in{\mathbb Z}_2(t)[x] }[/math] is irreducible and has a single zero of multiplicity 2 within its splitting field over [math]\displaystyle{ {\mathbb Z}_2(t)[x] }[/math].