07-1352/Class Notes for January 23: Difference between revisions

From Drorbn
Jump to navigationJump to search
No edit summary
No edit summary
Line 5: Line 5:


===The Algebra===
===The Algebra===

Let <math>A_n={\mathbb Q}S_n\otimes{\mathbb Q}\langle x_1\ldots x_n\rangle</math> be the vector-space tensor product of the group ring <math>{\mathbb Q}S_n</math> of the permutation group <math>S_n</math> with the completed free associative algebra <math>{\mathbb Q}\langle x_1\ldots x_n\rangle</math> on (non-commuting) generators <math>x_1\ldots x_n</math> (that is, <math>{\mathbb Q}\langle x_1\ldots x_n\rangle</math> is the ring of non-commutative power series in the variables <math>x_1\ldots x_n</math>). We put an algebra structure on <math>A_n</math> as follows:


===The Equations===
===The Equations===

Revision as of 14:17, 22 January 2007

In Preparation

The information below is preliminary and cannot be trusted! (v)

A HOMFLY Braidor

The Algebra

Let [math]\displaystyle{ A_n={\mathbb Q}S_n\otimes{\mathbb Q}\langle x_1\ldots x_n\rangle }[/math] be the vector-space tensor product of the group ring [math]\displaystyle{ {\mathbb Q}S_n }[/math] of the permutation group [math]\displaystyle{ S_n }[/math] with the completed free associative algebra [math]\displaystyle{ {\mathbb Q}\langle x_1\ldots x_n\rangle }[/math] on (non-commuting) generators [math]\displaystyle{ x_1\ldots x_n }[/math] (that is, [math]\displaystyle{ {\mathbb Q}\langle x_1\ldots x_n\rangle }[/math] is the ring of non-commutative power series in the variables [math]\displaystyle{ x_1\ldots x_n }[/math]). We put an algebra structure on [math]\displaystyle{ A_n }[/math] as follows:

The Equations

The Equations in Functional Terms

A Solution