User:Bailey/HW4: Difference between revisions
From Drorbn
Jump to navigationJump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
Testing 123 |
Testing 123 |
||
===The Generators=== |
|||
Our generators are <math>T</math>, <math>R</math>, <math>\Phi</math> and <math>B^{\pm}</math>: |
|||
{| align=center cellpadding=10 style="border: solid orange 1px" |
|||
|- align=center valign=middle |
|||
|align=left|Picture |
|||
| |
|||
| |
|||
| |
|||
|[[Image:06-1350-BPlus.svg|100px]] |
|||
| |
|||
|- align=center valign=middle |
|||
|align=left|Generator |
|||
|<math>T</math> |
|||
|<math>R</math> |
|||
|<math>\Phi</math> |
|||
|<math>B^+</math> |
|||
|<math>B^-</math> |
|||
|- align=center valign=middle |
|||
|align=left|Perturbation |
|||
|<math>t</math> |
|||
|<math>r</math> |
|||
|<math>\varphi</math> |
|||
|<math>b^+</math> |
|||
|<math>b^-</math> |
|||
|} |
|||
===The Relations=== |
|||
====The Reidemeister Move R3==== |
|||
The picture (with three sides of the shielding removed) is |
|||
[[Image:06-1350-R4.svg|400px|center]] |
|||
In formulas, this is |
|||
<center><math>(1230)^\star B^+ (1213)^\star B^+ (1023)^\star B^+ = (1123)^\star B^+ (1203)^\star B^+ (1231)^\star B^+</math>.</center> |
|||
Linearized and written in functional form, this becomes |
|||
{| align=center |
|||
|- |
|||
|<math>\rho_3(x_1, x_2, x_3, x_4) = </math> |
|||
|<math>b^+(x_1,x_2,x_3) + b^+(x_1+x_3,x_2,x_4) + b^+(x_1,x_3,x_4)</math> |
|||
|- |
|||
| |
|||
|<math>- b^+(x_1+x_2,x_3,x_4) - b^+(x_1,x_2,x_4) - b^+(x_1+x_4,x_2,x_3).</math> |
|||
|} |
|||
===The Syzygies=== |
|||
====The "B around B" Syzygy==== |
|||
The picture, with all shielding removed, is |
|||
{| align=center |
|||
|- align=center |
|||
|[[Image:06-1350-BAroundB.svg|center]] |
|||
|- |
|||
|align=right|(Drawn with [http://www.inkscape.org/ Inkscape])<br>(note that lower quality pictures are also acceptable) |
|||
|} |
|||
The functional form of this syzygy is |
|||
{| align=center |
|||
|- |
|||
|<math>BB(x_1,x_2,x_3,x_4,x_5) = </math> |
|||
|<math>\rho_3(x_1, x_2, x_3, x_5) + \rho_3(x_1 + x_5, x_2, x_3, x_4) - \rho_3(x_1 + x_2, x_3, x_4, x_5)</math> |
|||
|- |
|||
| |
|||
|<math>- \rho_3(x_1, x_2, x_4, x_5) - \rho_3(x_1 + x_4, x_2, x_3, x_5) - \rho_3(x_1, x_2, x_3, x_4)</math> |
|||
|- |
|||
| |
|||
|<math>+ \rho_3(x_1, x_3, x_4, x_5) + \rho_3(x_1 + x_3, x_2, x_4, x_5).</math> |
|||
|} |
|||
===A Mathematica Verification=== |
|||
The following simulated Mathematica session proves that for our single relation and single syzygy, <math>d^2=0</math>. Copy paste it into a live Mathematica session to see that it's right! |
|||
{{In|n=1|in=<nowiki>d1 = { |
|||
rho3[x1_, x2_, x3_, x4_] :> bp[x1, x2, x3] + bp[x1 + x3, x2, x4] + |
|||
bp[x1, x3, x4] - bp[x1 + x2, x3, x4] - bp[x1, x2, x4] - |
|||
bp[x1 + x4, x2, x3] |
|||
}; |
|||
d2 = { |
|||
BAroundB[x1_, x2_, x3_, x4_, x5_] :> rho3[x1, x2, x3, x5] + |
|||
rho3[x1 + x5, x2, x3, x4] - rho3[x1 + x2, x3, x4, x5] - |
|||
rho3[x1, x2, x4, x5] - rho3[x1 + x4, x2, x3, x5] - |
|||
rho3[x1, x2, x3, x4] + rho3[x1, x3, x4, x5] + |
|||
rho3[x1 + x3, x2, x4, x5] |
|||
};</nowiki>}} |
|||
{{InOut|n=3|in=<nowiki>BAroundB[x1, x2, x3, x4, x5] /. d2</nowiki>|out=<nowiki>- rho3[x1, x2, x3, x4] + rho3[x1, x2, x3, x5] - rho3[x1, x2, x4, x5] |
|||
+ rho3[x1, x3, x4, x5] - rho3[x1 + x2, x3, x4, x5] |
|||
+ rho3[x1 + x3, x2, x4, x5] - rho3[x1 + x4, x2, x3, x5] |
|||
+ rho3[x1 + x5, x2, x3, x4]</nowiki>}} |
|||
{{InOut|n=4|in=<nowiki>BAroundB[x1, x2, x3, x4, x5] /. d2 /. d1</nowiki>|out=<nowiki>0</nowiki>}} |
Revision as of 00:20, 6 December 2006
Testing 123
The Generators
Our generators are , , and :
Picture | |||||
Generator | |||||
Perturbation |
The Relations
The Reidemeister Move R3
The picture (with three sides of the shielding removed) is
In formulas, this is
Linearized and written in functional form, this becomes
The Syzygies
The "B around B" Syzygy
The picture, with all shielding removed, is
(Drawn with Inkscape) (note that lower quality pictures are also acceptable) |
The functional form of this syzygy is
A Mathematica Verification
The following simulated Mathematica session proves that for our single relation and single syzygy, . Copy paste it into a live Mathematica session to see that it's right!
In[1]:=
|
d1 = {
rho3[x1_, x2_, x3_, x4_] :> bp[x1, x2, x3] + bp[x1 + x3, x2, x4] +
bp[x1, x3, x4] - bp[x1 + x2, x3, x4] - bp[x1, x2, x4] -
bp[x1 + x4, x2, x3]
};
d2 = {
BAroundB[x1_, x2_, x3_, x4_, x5_] :> rho3[x1, x2, x3, x5] +
rho3[x1 + x5, x2, x3, x4] - rho3[x1 + x2, x3, x4, x5] -
rho3[x1, x2, x4, x5] - rho3[x1 + x4, x2, x3, x5] -
rho3[x1, x2, x3, x4] + rho3[x1, x3, x4, x5] +
rho3[x1 + x3, x2, x4, x5]
};
|
In[3]:=
|
BAroundB[x1, x2, x3, x4, x5] /. d2
|
Out[3]=
|
- rho3[x1, x2, x3, x4] + rho3[x1, x2, x3, x5] - rho3[x1, x2, x4, x5]
+ rho3[x1, x3, x4, x5] - rho3[x1 + x2, x3, x4, x5]
+ rho3[x1 + x3, x2, x4, x5] - rho3[x1 + x4, x2, x3, x5]
+ rho3[x1 + x5, x2, x3, x4]
|
In[4]:=
|
BAroundB[x1, x2, x3, x4, x5] /. d2 /. d1
|
Out[4]=
|
0
|