User:Drorbn/06-1350-HW4: Difference between revisions
From Drorbn
Jump to navigationJump to search
No edit summary |
|||
Line 47: | Line 47: | ||
====The "B around B" Syzygy==== |
====The "B around B" Syzygy==== |
||
{| align=center |
|||
⚫ | |||
|- align=center |
|||
⚫ | |||
|- |
|||
|align=right|(Drawn with [http://www.inkscape.org/ Inkscape]) |
|||
|} |
|||
The functional form of this syzygy is |
|||
{| align=center |
|||
|- |
|||
|<math>BB(x_1,x_2,x_3,x_4,x_5) = </math> |
|||
|<math>\rho_3(x_1, x_2, x_3, x_5) + \rho_3(x_1 + x_5, x_2, x_3, x_4) - \rho_3(x_1 + x_2, x_3, x_4, x_5)</math> |
|||
|- |
|||
| |
|||
|<math>- \rho_3(x_1, x_2, x_4, x_5) - \rho_3(x_1 + x_4, x_2, x_3, x_5) - \rho_3(x_1, x_2, x_3, x_4)</math> |
|||
|- |
|||
| |
|||
|<math>+ \rho_3(x_1, x_3, x_4, x_5) + \rho_3(x_1 + x_3, x_2, x_4, x_5).</math> |
|||
|} |
|||
===A Mathematica Verification=== |
===A Mathematica Verification=== |
||
The following simulated Mathematica session proves that for our signle relation and single syzygy, <math>d^2=0</math>. Copy paste it into a live Mathematica session to see that it's right! |
|||
{{In|n=1|in=<nowiki>d1 = { |
|||
rho3[x1_, x2_, x3_, x4_] :> bp[x1, x2, x3] + bp[x1 + x3, x2, x4] + bp[x1, x3, x4] - |
|||
bp[x1 + x2, x3, x4] - bp[x1, x2, x4] - bp[x1 + x4, x2, x3] |
|||
}; |
|||
d2 = { |
|||
BAroundB[x1_, x2_, x3_, x4_, x5_] :> rho3[x1, x2, x3, x5] + rho3[x1 + x5, x2, x3, x4] - |
|||
rho3[x1 + x2, x3, x4, x5] - rho3[x1, x2, x4, x5] - rho3[x1 + x4, x2, x3, x5] - |
|||
rho3[x1, x2, x3, x4] + rho3[x1, x3, x4, x5] + rho3[x1 + x3, x2, x4, x5] |
|||
};</nowiki>}} |
|||
{{InOut|n=3|in=<nowiki>BAroundB[x1, x2, x3, x4, x5] /. d2</nowiki>|out=<nowiki>-rho3[x1, x2, x3, x4] + rho3[x1, x2, x3, x5] - rho3[x1, x2, x4, x5] |
|||
+ rho3[x1, x3, x4, x5] - rho3[x1 + x2, x3, x4, x5] + rho3[x1 + x3, x2, x4, x5] |
|||
- rho3[x1 + x4, x2, x3, x5] + rho3[x1 + x5, x2, x3, x4]</nowiki>}} |
|||
{{InOut|n=4|in=<nowiki>BAroundB[x1, x2, x3, x4, x5] /. d2 /. d1</nowiki>|out=<nowiki>0</nowiki>}} |
Revision as of 12:38, 19 November 2006
The Generators
Our generators are , , and :
Picture | |||||
Generator | |||||
Perturbation |
The Relations
The Reidemeister Move R3
The picture (with three sides of the shielding removed) is
In formulas, this is
Linearized and written in functional form, this becomes
The Syzygies
The "B around B" Syzygy
(Drawn with Inkscape) |
The functional form of this syzygy is
A Mathematica Verification
The following simulated Mathematica session proves that for our signle relation and single syzygy, . Copy paste it into a live Mathematica session to see that it's right!
In[1]:=
|
d1 = {
rho3[x1_, x2_, x3_, x4_] :> bp[x1, x2, x3] + bp[x1 + x3, x2, x4] + bp[x1, x3, x4] -
bp[x1 + x2, x3, x4] - bp[x1, x2, x4] - bp[x1 + x4, x2, x3]
};
d2 = {
BAroundB[x1_, x2_, x3_, x4_, x5_] :> rho3[x1, x2, x3, x5] + rho3[x1 + x5, x2, x3, x4] -
rho3[x1 + x2, x3, x4, x5] - rho3[x1, x2, x4, x5] - rho3[x1 + x4, x2, x3, x5] -
rho3[x1, x2, x3, x4] + rho3[x1, x3, x4, x5] + rho3[x1 + x3, x2, x4, x5]
};
|
In[3]:=
|
BAroundB[x1, x2, x3, x4, x5] /. d2
|
Out[3]=
|
-rho3[x1, x2, x3, x4] + rho3[x1, x2, x3, x5] - rho3[x1, x2, x4, x5]
+ rho3[x1, x3, x4, x5] - rho3[x1 + x2, x3, x4, x5] + rho3[x1 + x3, x2, x4, x5]
- rho3[x1 + x4, x2, x3, x5] + rho3[x1 + x5, x2, x3, x4]
|
In[4]:=
|
BAroundB[x1, x2, x3, x4, x5] /. d2 /. d1
|
Out[4]=
|
0
|