06-240/Classnotes For Thursday October 5: Difference between revisions

From Drorbn
Jump to navigationJump to search
(Add missing examples)
(Added scan of Week 4 Lecture 2 notes)
Line 1: Line 1:
===Links to Classnotes===
<math>\mbox{From last class}{}_{}^{}</math>
* PDF file by [[User:Alla]]: [[Media:MAT_Lect008.pdf|Week 4 Lecture 2 notes]]
----<math>\mbox{From last class}{}_{}^{}</math>


<math>M_1=\begin{pmatrix}1&0\\0&0\end{pmatrix},
<math>M_1=\begin{pmatrix}1&0\\0&0\end{pmatrix},

Revision as of 16:52, 8 October 2006

Links to Classnotes











Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z=a+bi=a\cdot 1+b\cdot i\mbox{ with coefficients in }\mathbb{R}\mbox{ so }\lbrace1,i\rbrace\mbox{ generates}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \qquad{}_{}^{}\mbox{2. Show }\beta=\lbrace1,i\rbrace\mbox{ are linearly independent. Assume }a\cdot 1+b\cdot i=0\mbox{ where }a,b\in\mathbb{R}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {}_{}^{}\Rightarrow a+bi=0\Rightarrow a=0\mbox{ and } b=0}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {}_{}^{}\mbox{4. }V\in\mathbb{R}^n= \left\lbrace\begin{pmatrix}\vdots\end{pmatrix}y,\qquad e_1=\begin{pmatrix}1\\0\\\vdots\\0\end{pmatrix}, e_2=\begin{pmatrix}0\\1\\\vdots\\0\end{pmatrix},\ldots, e_n=\begin{pmatrix}0\\0\\\vdots\\1\end{pmatrix}\right\rbrace}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {}_{}^{}e_1\ldots e_n\mbox{ are a basis of }V}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {}_{}^{}\mbox{They span }\begin{pmatrix}a_1\\\vdots\\a_n\end{pmatrix}=\sum a_ie_i}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {}_{}^{}\mbox{They are linearly independent. }\sum a_ie_i=0\Rightarrow \sum a_ie_i= \begin{pmatrix}a_1\\\vdots\\a_n\end{pmatrix}=0\Rightarrow a_i=0 \quad\forall i}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {}_{}^{}\mbox{5. In }V=P_3(\mathbb{R}),\qquad \beta=\lbrace 1,x,x^2,x^3\rbrace}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {}_{}^{}\mbox{6. In }V=P_1(\mathbb{R})=\lbrace ax+b\rbrace,\qquad \beta=\lbrace 1+x,1-x\rbrace\mbox{ is a basis}}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {}_{}^{}\mbox{1. Generate }}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u_1+u_2=2\Rightarrow \frac{1}{2}(u_1+u_2)=1\mbox{ so }1 \in\mbox{ span }S}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u_1-u_2=2x\Rightarrow \frac{1}{2}(u_1-u_2)=x\mbox{ so }x \in\mbox{ span }S}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {}_{}^{}\mbox{ so span}\lbrace 1,x\rbrace \subset\mbox{ span }\beta}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {}_{}^{}\mbox{2. Linearly independent. Assume }au_1+bu_2=0}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {}_{}^{}\Rightarrow a+b=0\mbox{ and }a-b=0}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (a+b)+(a-b)\Rightarrow 2a=0\Rightarrow a=0}



Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mbox{Theorem}{}_{}^{}}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {}_{}^{}\mbox{A subset }\beta\mbox{ of a vectorspace }V \mbox{ is a basis iff every }v\in V\mbox{ can be expressed as}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {}_{}^{}\mbox{a linear combination of elements in }} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {}_{}^{}\beta \mbox{ in exactly one way.}}


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mbox{Proof}{}_{}^{}}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {}_{}^{}\mbox{It is a combination of things we already know.}}

  1. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {}_{}^{}\beta\mbox{ generates}}
  2. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {}_{}^{}\beta\mbox{ is linearly independent}}