06-240/Classnotes For Thursday, September 28: Difference between revisions
(→Span) |
(→Span) |
||
| Line 32: | Line 32: | ||
''Example'' |
|||
To be continued ... |
|||
1. Let P<sub>3</sub>(<math>\Re</math>)={ax<sup>3</sup>+bx<sup>2</sup>+cx+d}<math>\subseteq</math>P(<math>\Re</math>), ''a'', ''b'', ''c'', ''d'', <math>\in \Re</math>. |
|||
''u''<sub>1</sub>=''x''<sup>3</sup>-2''x''<sup>2</sup>-5''x''-3 |
|||
''u''<sub>2</sub>=3''x''<sup>3</sup>-5''x''<sup>2</sup>-4''x''-9 |
|||
''v''=2''x''<sup>3</sup>-2''x''<sup>2</sup>+12''x''-6 |
|||
Revision as of 15:25, 29 September 2006
Linear Combination
Definition: Let (ui) = (u1, u2, ..., un) be a sequence of vectors in V. A sum of the form
- ai [math]\displaystyle{ \in }[/math] F, [math]\displaystyle{ \sum_{i=1}^n }[/math] aiui = a1u1 + a2u2+ ... +anun
is called a "Linear Combination" of the ui.
Span
span(ui):= The set of all possible linear combinations of the ui's.
If [math]\displaystyle{ \mathcal{S} \subseteq }[/math] V is any subset,
| span [math]\displaystyle{ \mathcal{S} }[/math] | := The set of all linear combination of vectors in [math]\displaystyle{ \mathcal{S} }[/math] |
| =[math]\displaystyle{ \left \{ \sum_{i=0}^n a_i u_i, a_i \in \mbox{F}, u_i \in \mathcal{S} \right \} \ni 0 }[/math] |
even if [math]\displaystyle{ \mathcal{S} }[/math] is empty.
Theorem: For any [math]\displaystyle{ \mathcal{S} \subseteq }[/math] V, span [math]\displaystyle{ \mathcal{S} }[/math] is a subspace of V.
Proof:
1. 0 [math]\displaystyle{ \in }[/math] span [math]\displaystyle{ \mathcal{S} }[/math].
2. Let x [math]\displaystyle{ \in }[/math] span [math]\displaystyle{ \mathcal{S} }[/math], Let x [math]\displaystyle{ \in }[/math] span [math]\displaystyle{ \mathcal{S} }[/math],
[math]\displaystyle{ \Rightarrow }[/math] x = [math]\displaystyle{ \sum_{i=1}^n }[/math] aiui, ui [math]\displaystyle{ \in \mathcal{S} }[/math], y = [math]\displaystyle{ \sum_{i=1}^m }[/math] bivi, vi [math]\displaystyle{ \in \mathcal{S} }[/math].
[math]\displaystyle{ \Rightarrow }[/math] x+y = [math]\displaystyle{ \sum_{i=1}^n }[/math] aiui + [math]\displaystyle{ \sum_{i=1}^m }[/math] bivi = [math]\displaystyle{ \sum_{i=1}^{m+n} }[/math] ciwi where ci=(a1, a2,...,an, b1, b2,...,bm) and wi=ci=(u1, u2,...,un, v1, v2,...,vm).
3. cx= c[math]\displaystyle{ \sum_{i=1}^n }[/math] aiui=[math]\displaystyle{ \sum_{i=1}^n }[/math] (cai)ui[math]\displaystyle{ \in }[/math] span [math]\displaystyle{ \mathcal{S} }[/math].
Example
1. Let P3([math]\displaystyle{ \Re }[/math])={ax3+bx2+cx+d}[math]\displaystyle{ \subseteq }[/math]P([math]\displaystyle{ \Re }[/math]), a, b, c, d, [math]\displaystyle{ \in \Re }[/math].
u1=x3-2x2-5x-3
u2=3x3-5x2-4x-9
v=2x3-2x2+12x-6