06-240/Classnotes For Thursday, September 28: Difference between revisions
From Drorbn
Jump to navigationJump to search
(→Span) |
|||
Line 30: | Line 30: | ||
<math>\Rightarrow</math> ''x''+''y'' = <math>\sum_{i=1}^n</math> ''a''<sub>i</sub>''u''<sub>i</sub> + <math>\sum_{i=1}^m</math> ''b''<sub>i</sub>''v''<sub>i</sub> = <math>\sum_{i=1}^{m+n}</math> ''c''<sub>i</sub>''w''<sub>i</sub> where ''c''<sub>i</sub>=(''a''<sub>1</sub>, ''a''<sub>2</sub>,...,''a''<sub>n</sub>, ''b''<sub>1</sub>, ''b''<sub>2</sub>,...,''b''<sub>m</sub>) and ''w''<sub>i</sub>=''c''<sub>i</sub>=(''u''<sub>1</sub>, ''u''<sub>2</sub>,...,''u''<sub>n</sub>, ''v''<sub>1</sub>, ''v''<sub>2</sub>,...,''v''<sub>m</sub>).<br> |
<math>\Rightarrow</math> ''x''+''y'' = <math>\sum_{i=1}^n</math> ''a''<sub>i</sub>''u''<sub>i</sub> + <math>\sum_{i=1}^m</math> ''b''<sub>i</sub>''v''<sub>i</sub> = <math>\sum_{i=1}^{m+n}</math> ''c''<sub>i</sub>''w''<sub>i</sub> where ''c''<sub>i</sub>=(''a''<sub>1</sub>, ''a''<sub>2</sub>,...,''a''<sub>n</sub>, ''b''<sub>1</sub>, ''b''<sub>2</sub>,...,''b''<sub>m</sub>) and ''w''<sub>i</sub>=''c''<sub>i</sub>=(''u''<sub>1</sub>, ''u''<sub>2</sub>,...,''u''<sub>n</sub>, ''v''<sub>1</sub>, ''v''<sub>2</sub>,...,''v''<sub>m</sub>).<br> |
||
3. ''cx''= c<math>\sum_{i=1}^n</math> ''a''<sub>i</sub>''u''<sub>i</sub>=<math>\sum_{i=1}^n</math> (''ca''<sub>i</sub>)''u''<sub>i</sub><math>\in </math> span <math>\mathcal{S}</math>. |
3. ''cx''= c<math>\sum_{i=1}^n</math> ''a''<sub>i</sub>''u''<sub>i</sub>=<math>\sum_{i=1}^n</math> (''ca''<sub>i</sub>)''u''<sub>i</sub><math>\in </math> span <math>\mathcal{S}</math>. |
||
To be continued ... |
Revision as of 13:07, 29 September 2006
Linear Combination
Definition: Let (ui) = (u1, u2, ..., un) be a sequence of vectors in V. A sum of the form
- ai F, aiui = a1u1 + a2u2+ ... +anun
is called a "Linear Combination" of the ui.
Span
span(ui):= The set of all possible linear combinations of the ui's.
If V is any subset,
span | := The set of all linear combination of vectors in |
= |
even if is empty.
Theorem: For any V, span is a subspace of V.
Proof:
1. 0 span .
2. Let x span , Let x span ,
x = aiui, ui , y = bivi, vi .
x+y = aiui + bivi = ciwi where ci=(a1, a2,...,an, b1, b2,...,bm) and wi=ci=(u1, u2,...,un, v1, v2,...,vm).
3. cx= c aiui= (cai)ui span .
To be continued ...