User:Wongpak: Difference between revisions
(→Span) |
No edit summary |
||
| Line 1: | Line 1: | ||
===Linear Combination=== |
|||
Definition: Let (''u''<sub>i</sub>) = (''u''<sub>1</sub>, ''u''<sub>2</sub>, ..., ''u''<sub>n</sub>) be a sequence of vectors in V. A sum of the form<br> |
|||
::''a''<sub>i</sub> <math> \in </math> F, <math>\sum_{i=1}^n</math> ''a''<sub>i</sub>''u''<sub>i</sub> = ''a''<sub>1</sub>''u''<sub>1</sub> + ''a''<sub>2</sub>''u''<sub>2</sub>+ ... +''a''<sub>n</sub>''u''<sub>n</sub> |
|||
is called a "Linear Combination" of the ''u''<sub>i</sub>. |
|||
===Span=== |
===Span=== |
||
Revision as of 13:06, 29 September 2006
Span
span(ui):= The set of all possible linear combinations of the ui's.
If [math]\displaystyle{ \mathcal{S} \subseteq }[/math] V is any subset,
| span [math]\displaystyle{ \mathcal{S} }[/math] | := The set of all linear combination of vectors in [math]\displaystyle{ \mathcal{S} }[/math] |
| =[math]\displaystyle{ \left \{ \sum_{i=0}^n a_i u_i, a_i \in \mbox{F}, u_i \in \mathcal{S} \right \} \ni 0 }[/math] |
even if [math]\displaystyle{ \mathcal{S} }[/math] is empty.
Theorem: For any [math]\displaystyle{ \mathcal{S} \subseteq }[/math] V, span [math]\displaystyle{ \mathcal{S} }[/math] is a subspace of V.
Proof:
1. 0 [math]\displaystyle{ \in }[/math] span [math]\displaystyle{ \mathcal{S} }[/math].
2. Let x [math]\displaystyle{ \in }[/math] span [math]\displaystyle{ \mathcal{S} }[/math], Let x [math]\displaystyle{ \in }[/math] span [math]\displaystyle{ \mathcal{S} }[/math],
[math]\displaystyle{ \Rightarrow }[/math] x = [math]\displaystyle{ \sum_{i=1}^n }[/math] aiui, ui [math]\displaystyle{ \in \mathcal{S} }[/math], y = [math]\displaystyle{ \sum_{i=1}^m }[/math] bivi, vi [math]\displaystyle{ \in \mathcal{S} }[/math].
[math]\displaystyle{ \Rightarrow }[/math] x+y = [math]\displaystyle{ \sum_{i=1}^n }[/math] aiui + [math]\displaystyle{ \sum_{i=1}^m }[/math] bivi = [math]\displaystyle{ \sum_{i=1}^{m+n} }[/math] ciwi where ci=(a1, a2,...,an, b1, b2,...,bm) and wi=ci=(u1, u2,...,un, v1, v2,...,vm).
3. cx= c[math]\displaystyle{ \sum_{i=1}^n }[/math] aiui=[math]\displaystyle{ \sum_{i=1}^n }[/math] (cai)ui[math]\displaystyle{ \in }[/math] span [math]\displaystyle{ \mathcal{S} }[/math].