06-240/Classnotes For Thursday, September 21: Difference between revisions

From Drorbn
Jump to navigationJump to search
m (Fix up LaTeX)
m (More formatting)
Line 2: Line 2:


==<center><u>'''Force Vectors'''</u></center>==
==<center><u>'''Force Vectors'''</u></center>==
#There is a special force vector called 0.
#<math>\mbox{There is a special force vector called 0.}</math>
#They can be added.
#<math>\mbox{They can be added.}</math>
#They can be multiplied by any scalar.
#<math>\mbox{They can be multiplied by any scalar.}</math>


====''Properties''==== (convention: x,y,z-vectors; a,b,c-scalars)
====''Properties''====

# <math> x+y=y+x \ </math>
<math>\mbox{(convention: }x,y,z \mbox{ are vectors; }a,b,c \mbox{ are scalars)}</math>
#<math> x+y=y+x \ </math>
#<math> x+(y+z)=(x+y)+z \ </math>
#<math> x+(y+z)=(x+y)+z \ </math>
#<math> x+0=x \ </math>
#<math> x+0=x \ </math>
#<math> \forall x\; \exists\ y \ s.t.\ x+y=0 \ </math>
#<math> \forall x\; \exists\ y \ \mbox{ s.t. }x+y=0</math>
#<math> 1\cdot x=x \ </math>
#<math> 1\cdot x=x \ </math>
#<math> a(bx)=(ab)x \ </math>
#<math> a(bx)=(ab)x \ </math>
Line 16: Line 18:
#<math> (a+b)x=ax+bx \ </math>
#<math> (a+b)x=ax+bx \ </math>


=====Definition=====
=====Definition===== Let F be a field "of scalars". A vector space over F is a set V (of "vectors") along with two operations:

Let F be a field "of scalars". A vector space over F is a set V, of "vectors", along with two operations

: <math> +: V \times V \to V </math>
: <math> +: V \times V \to V </math>
: <math> \cdot: F \times V \to V </math>, so that
: <math> \cdot: F \times V \to V \mbox{, so that:}</math>
#<math> \forall x,y \in V\ x+y=y+x </math>
#<math> \forall x,y \in V\ x+y=y+x </math>
#<math> \forall x,y \in V\ x+(y+z)=(x+y)+z </math>
#<math> \forall x,y \in V\ x+(y+z)=(x+y)+z </math>
Line 37: Line 42:
<math> 0_{F^n}=(0,\ldots,0) </math> <br/>
<math> 0_{F^n}=(0,\ldots,0) </math> <br/>
<math> a\in F\ ax=(aa_1,aa_2,\ldots,aa_n) </math> <br/>
<math> a\in F\ ax=(aa_1,aa_2,\ldots,aa_n) </math> <br/>
<math> In \ \mathbb{Q}^3 \ \left( \frac{3}{2},-2,7\right)+\left( \frac{-3}{2}, \frac{1}{3},240\right)=\left(0, \frac{-5}{3},247\right) </math> <br/>
<math> \mbox{In } \mathbb{Q}^3 \ \left( \frac{3}{2},-2,7\right)+\left( \frac{-3}{2}, \frac{1}{3},240\right)=\left(0, \frac{-5}{3},247\right) </math> <br/>
<math> 7\left( \frac{1}{5},\frac{1}{7},\frac{1}{9}\right)=\left( \frac{7}{5},1,\frac{7}{9}\right) </math> <br/>
<math> 7\left( \frac{1}{5},\frac{1}{7},\frac{1}{9}\right)=\left( \frac{7}{5},1,\frac{7}{9}\right) </math> <br/>
'''Ex.2.'''
'''Ex.2.'''
Line 43: Line 48:
& \vdots \\ a_{m1} & \cdots & a_{mn}\end{pmatrix}: a_{ij} \in F \right\rbrace </math> <br/>
& \vdots \\ a_{m1} & \cdots & a_{mn}\end{pmatrix}: a_{ij} \in F \right\rbrace </math> <br/>
<math> M_{3\times 2}( \mathbb{R})\ni \begin{pmatrix} 7 & -7 \\ \pi & \mathit{e} \\ -5 & 2 \end{pmatrix} </math> <br/>
<math> M_{3\times 2}( \mathbb{R})\ni \begin{pmatrix} 7 & -7 \\ \pi & \mathit{e} \\ -5 & 2 \end{pmatrix} </math> <br/>
Addition by adding entry by entry:
<math>\mbox{Addition by adding entry by entry:}</math>


<math> M_{2\times 2}\ \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}+\begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}=\begin{pmatrix} {a_{11}+b_{11}} & {a_{12}+b_{12}} \\ {a_{21}+b_{21}} & {a_{22}+b_{22}} \end{pmatrix}</math> <br/>
<math> M_{2\times 2}\ \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}+\begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}=\begin{pmatrix} {a_{11}+b_{11}} & {a_{12}+b_{12}} \\ {a_{21}+b_{21}} & {a_{22}+b_{22}} \end{pmatrix}</math> <br/>


Multiplication by multiplying scalar c to all entries by M.
<math>\mbox{Multiplication by multiplying scalar c to all entries by M.}</math>


<math> c\cdot M_{2\times 2}\ \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}=\begin{pmatrix} c\cdot a_{11} & c\cdot a_{12} \\ c\cdot a_{21} & c\cdot a_{22} \end{pmatrix}</math> <br/> <br/>
<math> c\cdot M_{2\times 2}\ \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}=\begin{pmatrix} c\cdot a_{11} & c\cdot a_{12} \\ c\cdot a_{21} & c\cdot a_{22} \end{pmatrix}</math> <br/> <br/>


Zero matrix has all entries = 0:
<math>\mbox{Zero matrix has all entries = 0:}</math>


<math> 0_{M_{m\times n}}=\begin{pmatrix} 0 & \cdots & 0 \\ \vdots &
<math> 0_{M_{m\times n}}=\begin{pmatrix} 0 & \cdots & 0 \\ \vdots &
Line 58: Line 63:
<math> \mathbb{C}</math> form a vector space over <math> \mathbb{R}</math>. <br/>
<math> \mathbb{C}</math> form a vector space over <math> \mathbb{R}</math>. <br/>
'''Ex.4.'''
'''Ex.4.'''
F is a vector space over itself. <br/>
<math>\mbox{F is a vector space over itself.}</math> <br/>
'''Ex.5.'''
'''Ex.5.'''
<math> \mathbb{R}</math> is a vector space over <math> \mathbb{Q}</math>. <br/>
<math> \mathbb{R}</math> is a vector space over <math> \mathbb{Q}</math>. <br/>
'''Ex.6.'''
'''Ex.6.'''
Let S be a set. Let <br/>
<math>\mbox{Let S be a set. Let}</math> <br/>
<math> \mathcal{F}(S,\mathbb{R})=\big\{f:S\to \mathbb{R} \big\} </math> <br/>
<math> \mathcal{F}(S,\mathbb{R})=\big\{f:S\to \mathbb{R} \big\} </math> <br/>
<math> f,g \in \mathcal{F}(S,\mathbb{R}) </math> <br/>
<math> f,g \in \mathcal{F}(S,\mathbb{R}) </math> <br/>

Revision as of 05:31, 27 September 2006

A force has a direction & a magnitude.

Force Vectors

  1. [math]\displaystyle{ \mbox{There is a special force vector called 0.} }[/math]
  2. [math]\displaystyle{ \mbox{They can be added.} }[/math]
  3. [math]\displaystyle{ \mbox{They can be multiplied by any scalar.} }[/math]

Properties

[math]\displaystyle{ \mbox{(convention: }x,y,z \mbox{ are vectors; }a,b,c \mbox{ are scalars)} }[/math]

  1. [math]\displaystyle{ x+y=y+x \ }[/math]
  2. [math]\displaystyle{ x+(y+z)=(x+y)+z \ }[/math]
  3. [math]\displaystyle{ x+0=x \ }[/math]
  4. [math]\displaystyle{ \forall x\; \exists\ y \ \mbox{ s.t. }x+y=0 }[/math]
  5. [math]\displaystyle{ 1\cdot x=x \ }[/math]
  6. [math]\displaystyle{ a(bx)=(ab)x \ }[/math]
  7. [math]\displaystyle{ a(x+y)=ax+ay \ }[/math]
  8. [math]\displaystyle{ (a+b)x=ax+bx \ }[/math]
Definition

Let F be a field "of scalars". A vector space over F is a set V, of "vectors", along with two operations

[math]\displaystyle{ +: V \times V \to V }[/math]
[math]\displaystyle{ \cdot: F \times V \to V \mbox{, so that:} }[/math]
  1. [math]\displaystyle{ \forall x,y \in V\ x+y=y+x }[/math]
  2. [math]\displaystyle{ \forall x,y \in V\ x+(y+z)=(x+y)+z }[/math]
  3. [math]\displaystyle{ \exists\ 0 \in V s.t.\; \forall x \in V\ x+0=x }[/math]
  4. [math]\displaystyle{ \forall x \in V\; \exists\ y \in V\ s.t. \ x+y=0 }[/math]
  5. [math]\displaystyle{ 1\cdot x=x\ }[/math]
  6. [math]\displaystyle{ a(bx)=(ab)x\ }[/math]
  7. [math]\displaystyle{ a(x+y)=ax+ay\ }[/math]
  8. [math]\displaystyle{ \forall x \in V\ ,\forall a,b \in F\ (a+b)x=ax+bx }[/math]

9. [math]\displaystyle{ x \mapsto \vert x\vert \in \mathbb{R} \ \vert x+y\vert \le \vert x\vert+\vert y\vert }[/math]

Examples

Ex.1. [math]\displaystyle{ F^n= \lbrace(a_1,a_2,a_3,\ldots,a_{n-1},a_n):\forall i\ a_i \in F \rbrace }[/math]
[math]\displaystyle{ n \in \mathbb{Z}\ , n \ge 0 }[/math]
[math]\displaystyle{ x=(a_1,\ldots,a_2)\ y=(b_1,\ldots, b_2)\ }[/math]
[math]\displaystyle{ x+y:=(a_1+b_1,a_2+b_2,\ldots,a_n+b_n)\ }[/math]
[math]\displaystyle{ 0_{F^n}=(0,\ldots,0) }[/math]
[math]\displaystyle{ a\in F\ ax=(aa_1,aa_2,\ldots,aa_n) }[/math]
[math]\displaystyle{ \mbox{In } \mathbb{Q}^3 \ \left( \frac{3}{2},-2,7\right)+\left( \frac{-3}{2}, \frac{1}{3},240\right)=\left(0, \frac{-5}{3},247\right) }[/math]
[math]\displaystyle{ 7\left( \frac{1}{5},\frac{1}{7},\frac{1}{9}\right)=\left( \frac{7}{5},1,\frac{7}{9}\right) }[/math]
Ex.2. [math]\displaystyle{ V=M_{m\times n}(F)=\left\lbrace\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \cdots & a_{mn}\end{pmatrix}: a_{ij} \in F \right\rbrace }[/math]
[math]\displaystyle{ M_{3\times 2}( \mathbb{R})\ni \begin{pmatrix} 7 & -7 \\ \pi & \mathit{e} \\ -5 & 2 \end{pmatrix} }[/math]
[math]\displaystyle{ \mbox{Addition by adding entry by entry:} }[/math]

[math]\displaystyle{ M_{2\times 2}\ \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}+\begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}=\begin{pmatrix} {a_{11}+b_{11}} & {a_{12}+b_{12}} \\ {a_{21}+b_{21}} & {a_{22}+b_{22}} \end{pmatrix} }[/math]

[math]\displaystyle{ \mbox{Multiplication by multiplying scalar c to all entries by M.} }[/math]

[math]\displaystyle{ c\cdot M_{2\times 2}\ \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}=\begin{pmatrix} c\cdot a_{11} & c\cdot a_{12} \\ c\cdot a_{21} & c\cdot a_{22} \end{pmatrix} }[/math]

[math]\displaystyle{ \mbox{Zero matrix has all entries = 0:} }[/math]

[math]\displaystyle{ 0_{M_{m\times n}}=\begin{pmatrix} 0 & \cdots & 0 \\ \vdots & & \vdots \\ 0 & \cdots & 0\end{pmatrix} }[/math]
Ex.3. [math]\displaystyle{ \mathbb{C} }[/math] form a vector space over [math]\displaystyle{ \mathbb{R} }[/math].
Ex.4. [math]\displaystyle{ \mbox{F is a vector space over itself.} }[/math]
Ex.5. [math]\displaystyle{ \mathbb{R} }[/math] is a vector space over [math]\displaystyle{ \mathbb{Q} }[/math].
Ex.6. [math]\displaystyle{ \mbox{Let S be a set. Let} }[/math]
[math]\displaystyle{ \mathcal{F}(S,\mathbb{R})=\big\{f:S\to \mathbb{R} \big\} }[/math]
[math]\displaystyle{ f,g \in \mathcal{F}(S,\mathbb{R}) }[/math]
[math]\displaystyle{ (f+g)(t)=f(t)+g(t)\ for\ any\ t\in S }[/math]
[math]\displaystyle{ (af)(t)=a\cdot f(t)\ }[/math]