06-240/Classnotes For Thursday, September 21: Difference between revisions
From Drorbn
Jump to navigationJump to search
m (Fix up LaTeX) |
m (More formatting) |
||
Line 2: | Line 2: | ||
==<center><u>'''Force Vectors'''</u></center>== |
==<center><u>'''Force Vectors'''</u></center>== |
||
#There is a special force vector called 0. |
#<math>\mbox{There is a special force vector called 0.}</math> |
||
#They can be added. |
#<math>\mbox{They can be added.}</math> |
||
#They can be multiplied by any scalar. |
#<math>\mbox{They can be multiplied by any scalar.}</math> |
||
====''Properties''==== |
====''Properties''==== |
||
⚫ | |||
<math>\mbox{(convention: }x,y,z \mbox{ are vectors; }a,b,c \mbox{ are scalars)}</math> |
|||
⚫ | |||
#<math> x+(y+z)=(x+y)+z \ </math> |
#<math> x+(y+z)=(x+y)+z \ </math> |
||
#<math> x+0=x \ </math> |
#<math> x+0=x \ </math> |
||
#<math> \forall x\; \exists\ y \ s.t. |
#<math> \forall x\; \exists\ y \ \mbox{ s.t. }x+y=0</math> |
||
#<math> 1\cdot x=x \ </math> |
#<math> 1\cdot x=x \ </math> |
||
#<math> a(bx)=(ab)x \ </math> |
#<math> a(bx)=(ab)x \ </math> |
||
Line 16: | Line 18: | ||
#<math> (a+b)x=ax+bx \ </math> |
#<math> (a+b)x=ax+bx \ </math> |
||
=====Definition===== |
|||
⚫ | |||
⚫ | |||
: <math> +: V \times V \to V </math> |
: <math> +: V \times V \to V </math> |
||
: <math> \cdot: F \times V \to V |
: <math> \cdot: F \times V \to V \mbox{, so that:}</math> |
||
#<math> \forall x,y \in V\ x+y=y+x </math> |
#<math> \forall x,y \in V\ x+y=y+x </math> |
||
#<math> \forall x,y \in V\ x+(y+z)=(x+y)+z </math> |
#<math> \forall x,y \in V\ x+(y+z)=(x+y)+z </math> |
||
Line 37: | Line 42: | ||
<math> 0_{F^n}=(0,\ldots,0) </math> <br/> |
<math> 0_{F^n}=(0,\ldots,0) </math> <br/> |
||
<math> a\in F\ ax=(aa_1,aa_2,\ldots,aa_n) </math> <br/> |
<math> a\in F\ ax=(aa_1,aa_2,\ldots,aa_n) </math> <br/> |
||
<math> In |
<math> \mbox{In } \mathbb{Q}^3 \ \left( \frac{3}{2},-2,7\right)+\left( \frac{-3}{2}, \frac{1}{3},240\right)=\left(0, \frac{-5}{3},247\right) </math> <br/> |
||
<math> 7\left( \frac{1}{5},\frac{1}{7},\frac{1}{9}\right)=\left( \frac{7}{5},1,\frac{7}{9}\right) </math> <br/> |
<math> 7\left( \frac{1}{5},\frac{1}{7},\frac{1}{9}\right)=\left( \frac{7}{5},1,\frac{7}{9}\right) </math> <br/> |
||
'''Ex.2.''' |
'''Ex.2.''' |
||
Line 43: | Line 48: | ||
& \vdots \\ a_{m1} & \cdots & a_{mn}\end{pmatrix}: a_{ij} \in F \right\rbrace </math> <br/> |
& \vdots \\ a_{m1} & \cdots & a_{mn}\end{pmatrix}: a_{ij} \in F \right\rbrace </math> <br/> |
||
<math> M_{3\times 2}( \mathbb{R})\ni \begin{pmatrix} 7 & -7 \\ \pi & \mathit{e} \\ -5 & 2 \end{pmatrix} </math> <br/> |
<math> M_{3\times 2}( \mathbb{R})\ni \begin{pmatrix} 7 & -7 \\ \pi & \mathit{e} \\ -5 & 2 \end{pmatrix} </math> <br/> |
||
Addition by adding entry by entry: |
<math>\mbox{Addition by adding entry by entry:}</math> |
||
<math> M_{2\times 2}\ \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}+\begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}=\begin{pmatrix} {a_{11}+b_{11}} & {a_{12}+b_{12}} \\ {a_{21}+b_{21}} & {a_{22}+b_{22}} \end{pmatrix}</math> <br/> |
<math> M_{2\times 2}\ \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}+\begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}=\begin{pmatrix} {a_{11}+b_{11}} & {a_{12}+b_{12}} \\ {a_{21}+b_{21}} & {a_{22}+b_{22}} \end{pmatrix}</math> <br/> |
||
Multiplication by multiplying scalar c to all entries by M. |
<math>\mbox{Multiplication by multiplying scalar c to all entries by M.}</math> |
||
<math> c\cdot M_{2\times 2}\ \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}=\begin{pmatrix} c\cdot a_{11} & c\cdot a_{12} \\ c\cdot a_{21} & c\cdot a_{22} \end{pmatrix}</math> <br/> <br/> |
<math> c\cdot M_{2\times 2}\ \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}=\begin{pmatrix} c\cdot a_{11} & c\cdot a_{12} \\ c\cdot a_{21} & c\cdot a_{22} \end{pmatrix}</math> <br/> <br/> |
||
Zero matrix has all entries = 0: |
<math>\mbox{Zero matrix has all entries = 0:}</math> |
||
<math> 0_{M_{m\times n}}=\begin{pmatrix} 0 & \cdots & 0 \\ \vdots & |
<math> 0_{M_{m\times n}}=\begin{pmatrix} 0 & \cdots & 0 \\ \vdots & |
||
Line 58: | Line 63: | ||
<math> \mathbb{C}</math> form a vector space over <math> \mathbb{R}</math>. <br/> |
<math> \mathbb{C}</math> form a vector space over <math> \mathbb{R}</math>. <br/> |
||
'''Ex.4.''' |
'''Ex.4.''' |
||
F is a vector space over itself. <br/> |
<math>\mbox{F is a vector space over itself.}</math> <br/> |
||
'''Ex.5.''' |
'''Ex.5.''' |
||
<math> \mathbb{R}</math> is a vector space over <math> \mathbb{Q}</math>. <br/> |
<math> \mathbb{R}</math> is a vector space over <math> \mathbb{Q}</math>. <br/> |
||
'''Ex.6.''' |
'''Ex.6.''' |
||
Let S be a set. Let <br/> |
<math>\mbox{Let S be a set. Let}</math> <br/> |
||
<math> \mathcal{F}(S,\mathbb{R})=\big\{f:S\to \mathbb{R} \big\} </math> <br/> |
<math> \mathcal{F}(S,\mathbb{R})=\big\{f:S\to \mathbb{R} \big\} </math> <br/> |
||
<math> f,g \in \mathcal{F}(S,\mathbb{R}) </math> <br/> |
<math> f,g \in \mathcal{F}(S,\mathbb{R}) </math> <br/> |
Revision as of 05:31, 27 September 2006
A force has a direction & a magnitude.
Force Vectors
Properties
Definition
Let F be a field "of scalars". A vector space over F is a set V, of "vectors", along with two operations
9.
Examples
Ex.1.
Ex.2.
Ex.3.
form a vector space over .
Ex.4.
Ex.5.
is a vector space over .
Ex.6.