06-240/Classnotes For Thursday, September 21: Difference between revisions

From Drorbn
Jump to navigationJump to search
No edit summary
 
No edit summary
Line 34: Line 34:
<math> n \in \mathbb{Z}\ , n \ge 0 </math> <br/>
<math> n \in \mathbb{Z}\ , n \ge 0 </math> <br/>
<math> x=(a_1,...,a_2)\ y=(b_1,...,b_2)\ </math> <br/>
<math> x=(a_1,...,a_2)\ y=(b_1,...,b_2)\ </math> <br/>
<math> x+y:=(a_1=b_1,a_2+b_2,...,a_n+b_n)\ </math> <br/>
<math> x+y:=(a_1+b_1,a_2+b_2,...,a_n+b_n)\ </math> <br/>
<math> 0_{F^n}=(0,...,0) </math> <br/>
<math> 0_{F^n}=(0,...,0) </math> <br/>
<math> a\in F\ ax=(aa_1,aa_2,...,aa_n) </math> <br/>
<math> a\in F\ ax=(aa_1,aa_2,...,aa_n) </math> <br/>

Revision as of 10:53, 24 September 2006

A force has a direction & a magnitude.

Force Vectors

  1. There is a special force vector called 0.
  2. They can be added.
  3. They can be multiplied by any scalar.

====Properties==== (convention: x,y,z-vectors; a,b,c-scalars)

=====Definition===== Let F be a field "of scalars". A vector space over F is a set V (of "vectors") along with two operations:

, so that

9.

Examples

Ex.1.







Ex.2.

Add by adding entry by entry:
Multiplication by a is multiplication of all entries by a.

Ex.3. form a vector space over .
Ex.4. F is a vector space over itself.
Ex.5. is a vector space over .
Ex.6. Let S be a set. Let