VasCalc Documentation - An example: Difference between revisions
From Drorbn
Jump to navigationJump to search
Line 24: | Line 24: | ||
+ (1/8)CD[Line[1, 2], Line[1, 2]] + (1/48)CD[Line[1, 2, 3], Line[1, 2, 3]] |
+ (1/8)CD[Line[1, 2], Line[1, 2]] + (1/48)CD[Line[1, 2, 3], Line[1, 2, 3]] |
||
, 2, 0]</nowiki>| |
, 2, 0]</nowiki>| |
||
out=<nowiki>ASeries[2, 0, {«JavaObject[vectorSpace.Coefficient]», «JavaObject[ChordVector]», |
out=<nowiki>ASeries[2, 0, {«JavaObject[vectorSpace.Coefficient]», «JavaObject[ChordVector]», |
||
«JavaObject[ChordVector]», «JavaObject[ChordVector]»}] </nowiki>}} |
|||
Now we define the definition of Z(B(k),n). Where Z stands for our (pseudo) Vassiliev |
|||
invariant and Z(B(k),n) is the invariant of a braid on n strands with a crossing |
|||
on the strands k and k+1. |
|||
{{In|n=5|in=<nowiki>Clear[Z] </nowiki>}} |
|||
{{In|n=6|in=<nowiki>Z[B[k_],n_] /; k > 1 := |
|||
Module[{ser, tbl}, |
|||
ser = Nest[AddStrand[#, #[[1]]] &, Nest[DoubleStrand[#, 0] &, Phi, k - 2], n - k - 1]. |
|||
Nest[AddStrand[#, #[[1]]] &, Nest[AddStrand[#, 0] &, R, k - 1], n - k - 1] . |
|||
Nest[AddStrand[#, #[[1]]] &, Nest[DoubleStrand[#, 0] &, |
|||
PermuteStrand[((Phi))^(-1), {{2, 3}}], k - 2], n - k - 1]; |
|||
tbl = Table[i, {i, ser[[1]]}]; |
|||
tbl = ReplacePart[tbl, k + 1, k]; |
|||
tbl = ReplacePart[tbl, k, k + 1]; |
|||
ASeries[tbl, ser[[3]]]]</nowiki>}} |
Revision as of 06:06, 16 August 2006
This is an example of how to use VasCalc. We check the third Reidemeister move against an almost-invariant (not a technical term).
The Reidemeister 3 Move
We want to use VasCalc to verify the third Reidemeister move. This is meant as a small example of how to use the VasCalc package.
The first couple of steps are to load up VasCalc.
In[1]:=
|
<<CDinterface.m
|
In[2]:=
|
SetVasCalcPath["/home/zavosh/vc"];
|
Now we need to load the definitions of and as defined in Dror's paper on Non-Associative Tangles:
In[3]:=
|
Phi = ASeries[1 + (1/24)*CD[Line[1],
Line[2], Line[1, 2]] - (1/24)*CD[Line[2], Line[1], Line[1, 2]], 3, 0, 3]
|
Out[3]=
|
ASeries[3, 0, {«JavaObject[vectorSpace.Coefficient]»,
«JavaObject[vectorSpace.Coefficient]», «JavaObject[ChordVector]»,
«JavaObject[vectorSpace.Coefficient]»}]
|
In[4]:=
|
R = ASeries[1 + (1/2)CD[Line[1], Line[1]]
+ (1/8)CD[Line[1, 2], Line[1, 2]] + (1/48)CD[Line[1, 2, 3], Line[1, 2, 3]]
, 2, 0]
|
Out[4]=
|
ASeries[2, 0, {«JavaObject[vectorSpace.Coefficient]», «JavaObject[ChordVector]»,
«JavaObject[ChordVector]», «JavaObject[ChordVector]»}]
|
Now we define the definition of Z(B(k),n). Where Z stands for our (pseudo) Vassiliev invariant and Z(B(k),n) is the invariant of a braid on n strands with a crossing on the strands k and k+1.
In[5]:=
|
Clear[Z]
|
In[6]:=
|
Z[B[k_],n_] /; k > 1 :=
Module[{ser, tbl},
ser = Nest[AddStrand[#, #[[1]]] &, Nest[DoubleStrand[#, 0] &, Phi, k - 2], n - k - 1].
Nest[AddStrand[#, #[[1]]] &, Nest[AddStrand[#, 0] &, R, k - 1], n - k - 1] .
Nest[AddStrand[#, #[[1]]] &, Nest[DoubleStrand[#, 0] &,
PermuteStrand[((Phi))^(-1), {{2, 3}}], k - 2], n - k - 1];
tbl = Table[i, {i, ser[[1]]}];
tbl = ReplacePart[tbl, k + 1, k];
tbl = ReplacePart[tbl, k, k + 1];
ASeries[tbl, ser[[3]]]]
|