VasCalc Documentation - An example: Difference between revisions

From Drorbn
Jump to navigationJump to search
Line 19: Line 19:
«JavaObject[vectorSpace.Coefficient]», «JavaObject[ChordVector]»,
«JavaObject[vectorSpace.Coefficient]», «JavaObject[ChordVector]»,
«JavaObject[vectorSpace.Coefficient]»}] </nowiki>}}
«JavaObject[vectorSpace.Coefficient]»}] </nowiki>}}


{{InOut|n=4|in=<nowiki>R = ASeries[1 + (1/2)CD[Line[1], Line[1]]
+ (1/8)CD[Line[1, 2], Line[1, 2]] + (1/48)CD[Line[1, 2, 3], Line[1, 2, 3]]
, 2, 0]</nowiki>|
out=<nowiki>ASeries[2, 0, {«JavaObject[vectorSpace.Coefficient]», «JavaObject[ChordVector]», «JavaObject[ChordVector]», «JavaObject[ChordVector]»}] </nowiki>}}

Revision as of 05:52, 16 August 2006

This is an example of how to use VasCalc. We check the third Reidemeister move against an almost-invariant (not a technical term).

The Reidemeister 3 Move

We want to use VasCalc to verify the third Reidemeister move. This is meant as a small example of how to use the VasCalc package.

The first couple of steps are to load up VasCalc.

In[1]:= <<CDinterface.m
In[2]:= SetVasCalcPath["/home/zavosh/vc"];

Now we need to load the definitions of and as defined in Dror's paper on Non-Associative Tangles:

In[3]:= Phi = ASeries[1 + (1/24)*CD[Line[1], Line[2], Line[1, 2]] - (1/24)*CD[Line[2], Line[1], Line[1, 2]], 3, 0, 3]
Out[3]= ASeries[3, 0, {«JavaObject[vectorSpace.Coefficient]», «JavaObject[vectorSpace.Coefficient]», «JavaObject[ChordVector]», «JavaObject[vectorSpace.Coefficient]»}]


In[4]:= R = ASeries[1 + (1/2)CD[Line[1], Line[1]] + (1/8)CD[Line[1, 2], Line[1, 2]] + (1/48)CD[Line[1, 2, 3], Line[1, 2, 3]] , 2, 0]
Out[4]= ASeries[2, 0, {«JavaObject[vectorSpace.Coefficient]», «JavaObject[ChordVector]», «JavaObject[ChordVector]», «JavaObject[ChordVector]»}]