VasCalc Documentation - An example: Difference between revisions
From Drorbn
Jump to navigationJump to search
Line 11: | Line 11: | ||
{{In|n=2|in=<nowiki>SetVasCalcPath["/home/zavosh/vc"]; </nowiki>}} |
{{In|n=2|in=<nowiki>SetVasCalcPath["/home/zavosh/vc"]; </nowiki>}} |
||
Now we need to load the definitions of <math>\Phi</math> and <math>R</math> as |
|||
defined in Dror's paper on Non-Associative Tangles: |
|||
{{InOut|n=3|in=<nowiki>Phi = ASeries[1 + (1/24)*CD[Line[1], |
|||
Line[2], Line[1, 2]] - (1/24)*CD[Line[2], Line[1], Line[1, 2]], 3, 0, 3]</nowiki>| out=<nowiki>ASeries[3, 0, {«JavaObject[vectorSpace.Coefficient]», |
|||
«JavaObject[vectorSpace.Coefficient]», «JavaObject[ChordVector]», |
|||
«JavaObject[vectorSpace.Coefficient]»}] </nowiki>}} |
Revision as of 05:51, 16 August 2006
This is an example of how to use VasCalc. We check the third Reidemeister move against an almost-invariant (not a technical term).
The Reidemeister 3 Move
We want to use VasCalc to verify the third Reidemeister move. This is meant as a small example of how to use the VasCalc package.
The first couple of steps are to load up VasCalc.
In[1]:=
|
<<CDinterface.m
|
In[2]:=
|
SetVasCalcPath["/home/zavosh/vc"];
|
Now we need to load the definitions of and as defined in Dror's paper on Non-Associative Tangles:
In[3]:=
|
Phi = ASeries[1 + (1/24)*CD[Line[1],
Line[2], Line[1, 2]] - (1/24)*CD[Line[2], Line[1], Line[1, 2]], 3, 0, 3]
|
Out[3]=
|
ASeries[3, 0, {«JavaObject[vectorSpace.Coefficient]»,
«JavaObject[vectorSpace.Coefficient]», «JavaObject[ChordVector]»,
«JavaObject[vectorSpace.Coefficient]»}]
|