VasCalc Documentation - An example: Difference between revisions

From Drorbn
Jump to navigationJump to search
Line 11: Line 11:


{{In|n=2|in=<nowiki>SetVasCalcPath["/home/zavosh/vc"]; </nowiki>}}
{{In|n=2|in=<nowiki>SetVasCalcPath["/home/zavosh/vc"]; </nowiki>}}

Now we need to load the definitions of <math>\Phi</math> and <math>R</math> as
defined in Dror's paper on Non-Associative Tangles:

{{InOut|n=3|in=<nowiki>Phi = ASeries[1 + (1/24)*CD[Line[1],
Line[2], Line[1, 2]] - (1/24)*CD[Line[2], Line[1], Line[1, 2]], 3, 0, 3]</nowiki>| out=<nowiki>ASeries[3, 0, {«JavaObject[vectorSpace.Coefficient]»,
«JavaObject[vectorSpace.Coefficient]», «JavaObject[ChordVector]»,
«JavaObject[vectorSpace.Coefficient]»}] </nowiki>}}

Revision as of 05:51, 16 August 2006

This is an example of how to use VasCalc. We check the third Reidemeister move against an almost-invariant (not a technical term).

The Reidemeister 3 Move

We want to use VasCalc to verify the third Reidemeister move. This is meant as a small example of how to use the VasCalc package.

The first couple of steps are to load up VasCalc.

In[1]:= <<CDinterface.m
In[2]:= SetVasCalcPath["/home/zavosh/vc"];

Now we need to load the definitions of and as defined in Dror's paper on Non-Associative Tangles:

In[3]:= Phi = ASeries[1 + (1/24)*CD[Line[1], Line[2], Line[1, 2]] - (1/24)*CD[Line[2], Line[1], Line[1, 2]], 3, 0, 3]
Out[3]= ASeries[3, 0, {«JavaObject[vectorSpace.Coefficient]», «JavaObject[vectorSpace.Coefficient]», «JavaObject[ChordVector]», «JavaObject[vectorSpace.Coefficient]»}]