Notes for AKT-170217/0:03:07: Difference between revisions

From Drorbn
Jump to navigationJump to search
(Created page with "<math>g_0</math> may be the 0th in the class of Lie algebras we're playing with but its enveloping algebra can be made simpler still. Consider the algebra H obtained from <ma...")
 
No edit summary
Line 2: Line 2:
Consider the algebra H obtained from <math>U(g_0)</math> by inverting h and quotienting by the relation <math>l=-ef/h</math>
Consider the algebra H obtained from <math>U(g_0)</math> by inverting h and quotienting by the relation <math>l=-ef/h</math>
(check that <math>l+ef/h</math> is a central element in <math>U(g_0)</math>). And while we're at it, why not scale out the h entirely?
(check that <math>l+ef/h</math> is a central element in <math>U(g_0)</math>). And while we're at it, why not scale out the h entirely?
Does H reproduce the theory of <math>\Gamma</math> calculus?
Also, the screen is impossible to see on video but the accompanying mathematica file makes up for it twice.
Also, the screen is impossible to see on video but the accompanying mathematica file makes up for it twice.
{{Roland}}
{{Roland}}

Revision as of 17:17, 17 February 2017

may be the 0th in the class of Lie algebras we're playing with but its enveloping algebra can be made simpler still. Consider the algebra H obtained from by inverting h and quotienting by the relation (check that is a central element in ). And while we're at it, why not scale out the h entirely? Does H reproduce the theory of calculus? Also, the screen is impossible to see on video but the accompanying mathematica file makes up for it twice. Roland