14-240/Classnotes for Monday September 15: Difference between revisions
From Drorbn
Jump to navigationJump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
Definition: |
Definition: |
||
Subtract: if <math>a , b </math> belong to <math>F , a - b = a + (-b)</math>. |
Subtract: if <math>a , b </math> belong to <math>F , a - b = a + (-b)</math>. |
||
Divition: if <math>a , b </math> belong to F , |
Divition: if <math>a , b </math> belong to <math>F , a / b = a * (b </math>to the power <math>(-1)</math>. |
||
Theorem: |
Theorem: |
||
Line 33: | Line 33: | ||
There exists !(unique) <math>iota : Z ---> F</math> s.t. |
There exists !(unique) <math>iota : Z ---> F</math> s.t. |
||
1. <math>iota(0) = 0 , iota(1) = 1</math>; |
1. <math>iota(0) = 0 , iota(1) = 1</math>; |
||
2. For every <math>m ,n</math> belong to Z , <math>iota(m+n) = iota(m) + iota(n)</math>; |
2. For every <math>m ,n</math> belong to <math>Z</math> , <math>iota(m+n) = iota(m) + iota(n)</math>; |
||
3. >For every <math>m ,n</math> belong to Z , <math>iota(m*n) = iota(m) * iota(n)</math>. |
3. >For every <math>m ,n</math> belong to <math>Z</math> , <math>iota(m*n) = iota(m) * iota(n)</math>. |
||
iota(2) = iota(1+1) = iota(1) + iota(1) = 1 + 1; |
iota(2) = iota(1+1) = iota(1) + iota(1) = 1 + 1; |
Revision as of 11:03, 15 September 2014
Definition:
Subtract: if belong to . Divition: if belong to to the power .
Theorem:
8. For every belongs to F , . proof of 8: By F3 , ; By F5 , ; By F3 , ; By Thm P1 ,. 9. There not exists belongs to F s.t. ; For every belongs to F s.t. is not equal to . proof of 9: By F3 , is not equal to . 10. . 11. . 12. . proof of 12: <= : By P8 , if , then ; By P8 , if , then . => : Assume , if a = 0 we have done; Otherwise , by P8 , is not equal to and we have ; by cancellation (P2) , .
.
proof: By F5 ,
Theorem :
There exists !(unique) s.t. 1. ; 2. For every belong to , ; 3. >For every belong to , .
iota(2) = iota(1+1) = iota(1) + iota(1) = 1 + 1;
iota(3) = iota(2+1) = iota(2) + iota(1) = iota(2) + 1;
......
In F2 ,