11-1100-Pgadey-Lect6: Difference between revisions

From Drorbn
Jump to navigationJump to search
No edit summary
 
No edit summary
Line 3: Line 3:


;Theorem
;Theorem
: If <<X>> is a transitive <<G>>-set and <<x \in X>> then <<X \simeq G/Stab(x)>> where the isomorphism an isomorphism of <<G>>-sets.
: If <math>X</math> is a transitive <math>G</math>-set and <math>x \in X</math> then <math>X \simeq G/Stab(x)</math> where the isomorphism an isomorphism of <math>G</math>-sets.


; Transitive <<G>>-set
; Transitive <math>G</math>-set
: A <<G>>-set <<X>> is transitive is <<\forall_{x,y \in X} \exits_{g \in G}\ st.\ gx = y>>.
: A <math>G</math>-set <math>X</math> is transitive is <math>\forall_{x,y \in X} \exits_{g \in G}\ st.\ gx = y</math>.


; Stabilizer of a point
; Stabilizer of a point
: We write <<Stab(x) = \{g \in G : gx = x\}>> for the stabilizer subgroup of $x$.
: We write <math>Stab(x) = \{g \in G : gx = x\}</math> for the stabilizer subgroup of $x$.


''Proof'' We define an equivalence relation <<x \sim y \iff \exists_{g \in G} gx = y>>. This relation is reflexive since <<x = ex>> and thus <<x \sim x>>. This relation is symmetric since <<y = gx>> implies <<g^{-1}y = x>>. This relation is transitive, since if <<x = gy>> and <<y = hz>> then <<x = ghz>>. It follows that << X = \coprod_{i \in I} Gx_{i} >> where <<Gx_i>> denote the orbit of a point <<x_i>>.
''Proof'' We define an equivalence relation <math>x \sim y \iff \exists_{g \in G} gx = y</math>. This relation is reflexive since <math>x = ex</math> and thus <math>x \sim x</math>. This relation is symmetric since <math>y = gx</math> implies <math>g^{-1}y = x</math>. This relation is transitive, since if <math>x = gy</math> and <math>y = hz</math> then <math>x = ghz</math>. It follows that <math> X = \coprod_{i \in I} Gx_{i} </math> where <math>Gx_i</math> denote the orbit of a point <math>x_i</math>.


We then claim that <<Gx_i>> is a transitive <<G>>-set. <span style="color:green"> [Dror: "[This fact] is too easy."] </span>
We then claim that <math>Gx_i</math> is a transitive <math>G</math>-set. <span style="color:green"> [Dror: "[This fact] is too easy."] </span>


We show that <<Gx>> is isomorphic to <<G / Stab(x)>> as a <<G>>-set.
We show that <math>Gx</math> is isomorphic to <math>G / Stab(x)</math> as a <math>G</math>-set.
We produce two morphism <<\Psi : Gx \rightarrow G/Stab(x)>> and <<\Phi : G/Stab(x) \rightarrow Gx>>.
We produce two morphism <math>\Psi : Gx \rightarrow G/Stab(x)</math> and <math>\Phi : G/Stab(x) \rightarrow Gx</math>.


To define <<\Psi>> there is only one thing we can do. We have <<y \in Gx \Rightarrow y = gx>> and then we define <<\Psi(y) = g Stab(x)>>. We check that this map is well defined. If <<y = gx = g'x>> then <<g^{-1}g'x = x>> and hence <<g^{-1}g \in Stab(x)>>. It follows that <<gStab(x) = g'Stab(x)>>. Thus <<\Psi>> is well defined.
To define <math>\Psi</math> there is only one thing we can do. We have <math>y \in Gx \Rightarrow y = gx</math> and then we define <math>\Psi(y) = g Stab(x)</math>. We check that this map is well defined. If <math>y = gx = g'x</math> then <math>g^{-1}g'x = x</math> and hence <math>g^{-1}g \in Stab(x)</math>. It follows that <math>gStab(x) = g'Stab(x)</math>. Thus <math>\Psi</math> is well defined.


To define <<\Phi>> we take <<gStab(x) \in G/Stab(x)>> and define <<\Phi(gStab(x)) = gx>>. We show that this map is well defined. If <<gStab(x) = g'Stab(x)>> then <<g^{-1}g' \in Stab(x)>> and hence <<g^{-1}g'x = x>>. It follows that <<gx = g'x>> and hence <<\Phi>> is well defined.
To define <math>\Phi</math> we take <math>gStab(x) \in G/Stab(x)</math> and define <math>\Phi(gStab(x)) = gx</math>. We show that this map is well defined. If <math>gStab(x) = g'Stab(x)</math> then <math>g^{-1}g' \in Stab(x)</math> and hence <math>g^{-1}g'x = x</math>. It follows that <math>gx = g'x</math> and hence <math>\Phi</math> is well defined.


We need to check that <<\Psi>> and <<\Phi>> are mutually inverse and <<G>>-set morphisms. We quickly check that <<\Phi>> is a <<G>>-set morphism. If <<y = gx>> and <<g_1 \in G>> then <<g_1\Psi(y) = g_1(gStab(x)) = (g_1g)Stab(x)>>. Similarly, <<\Psi(g_1y) = g'Stab(x) = (g_1g)Stab(x)>>. The last inequality follows since we can take any <<g'>> such that <<g'y = g_1y>>. Why not take <<g' = g_1g>> -- since we know that works.
We need to check that <math>\Psi</math> and <math>\Phi</math> are mutually inverse and <math>G</math>-set morphisms. We quickly check that <math>\Phi</math> is a <math>G</math>-set morphism. If <math>y = gx</math> and <math>g_1 \in G</math> then <math>g_1\Psi(y) = g_1(gStab(x)) = (g_1g)Stab(x)</math>. Similarly, <math>\Psi(g_1y) = g'Stab(x) = (g_1g)Stab(x)</math>. The last inequality follows since we can take any <math>g'</math> such that <math>g'y = g_1y</math>. Why not take <math>g' = g_1g</math> -- since we know that works.


; Theorem (Orbit-Stabilizer)
; Theorem (Orbit-Stabilizer)
: If <<|X| < \infty>> and <<X = \coprod_{i \in I} Gx_i>> then <<|X| = \sum_{i} \frac{|G|}{Stab(x_i)}>>.
: If <math>|X| < \infty</math> and <math>X = \coprod_{i \in I} Gx_i</math> then <math>|X| = \sum_{i} \frac{|G|}{Stab(x_i)}</math>.


This is just a rewriting of the theorem above.
This is just a rewriting of the theorem above.


; <<p>>-Group
; <math>p</math>-Group
: A <<p>>-group is a group <<G>> with <<|G| = p^k>> for some <<k>>.
: A <math>p</math>-group is a group <math>G</math> with <math>|G| = p^k</math> for some <math>k</math>.


<<G = (Z/2Z)^3, (Z/2Z) \times (Z/4Z), Z/8Z, D_8, Q = \{\pm 1, \pm i, \pm j, \pm k : i^2 = j^2 = k^2 = -1, ij = k\}>>
<math>G = (Z/2Z)^3, (Z/2Z) \times (Z/4Z), Z/8Z, D_8, Q = \{\pm 1, \pm i, \pm j, \pm k : i^2 = j^2 = k^2 = -1, ij = k\}</math>


The last group <<Q>> is the famous ''unit quaternions'' -- They need a better description here.
The last group <math>Q</math> is the famous ''unit quaternions'' -- They need a better description here.


; Theorem
; Theorem
: Any <<p>>-group has a non-trivial centre.
: Any <math>p</math>-group has a non-trivial centre.


Let <<G>> act on itself by conjugation. Decompose <<G = \coprod Gx_i>>. Then,
Let <math>G</math> act on itself by conjugation. Decompose <math>G = \coprod Gx_i</math>. Then,
<< |G| = \sum_{|Gx_i| = 1} 1 + \sum_{|Gx_i| > 1} \frac{|G|}{|Stab(x)|} >>
<math> |G| = \sum_{|Gx_i| = 1} 1 + \sum_{|Gx_i| > 1} \frac{|G|}{|Stab(x)|} </math>
Observe that <<|Gx_i|| = 1>> iff <<x_i \in Z(G)>>. It follows that
Observe that <math>|Gx_i|| = 1</math> iff <math>x_i \in Z(G)</math>. It follows that
<< |G| = |Z(G)| + \sum_{|Gx_i| > 1} \frac{|G|}{|Stab(x)|} >>
<math> |G| = |Z(G)| + \sum_{|Gx_i| > 1} \frac{|G|}{|Stab(x)|} </math>
The formula above is called ''"the class formula"''. We have that <<|G| / |Stab(x)| = p^k>> for some << 1 < k>> since <<Stab(x)>> is a subgroup. It follows that <<|G| \equiv 0\ \mod\ p>> and <<\sum_{|Gx_i| > 1} \frac{|G|}{|Stab(x_i)|} \equiv 0\ \mod\ p>>. It follows that <<|Z(G)| \equiv 0\ \mod\ p>>. Since <<e \in Z(G)>> we have <<1 \leq |Z(G)|>> and thus <<p \leq |Z(G)|>>.
The formula above is called ''"the class formula"''. We have that <math>|G| / |Stab(x)| = p^k</math> for some <math> 1 < k</math> since <math>Stab(x)</math> is a subgroup. It follows that <math>|G| \equiv 0\ \mod\ p</math> and <math>\sum_{|Gx_i| > 1} \frac{|G|}{|Stab(x_i)|} \equiv 0\ \mod\ p</math>. It follows that <math>|Z(G)| \equiv 0\ \mod\ p</math>. Since <math>e \in Z(G)</math> we have <math>1 \leq |Z(G)|</math> and thus <math>p \leq |Z(G)|</math>.


SYLOW
SYLOW
Line 51: Line 51:


; Cauchy's Lemma
; Cauchy's Lemma
: If <<A>> is an abelian group and <<p>> divides <<|A|>>, then there is an element of order <<p>> in <<A>>.
: If <math>A</math> is an abelian group and <math>p</math> divides <math>|A|</math>, then there is an element of order <math>p</math> in <math>A</math>.


''Proof''. Pick <<x \in A>>. If <<p>> divides the order of <<x>> then we have <<x^{np} = e>> for some <<n>>. It follows that <<(x^n)^p = e>>. We then have that the order of <<x^n>> is <<p>>. If <<p>> does not divide the order of <<p>>, then consider <<A / <x> >>. Since <<A>> is abelian, << <x> >> is a normal subgroup. We have that <<p>> divides <<|A/<x>|>>, and <<|A / <x>| < |A|>>. We then induct. Let << y<x> >> have order <<p>>, that is << (y<x>)^p = <x> >>. We then have that << y^p = x^k >> for some << k >>. We write << |<y>| = np + r >> where << 0 \leq p < r >>. We then have << e = y^{|<y>|} = y^{np + r} = x^{nkp}y^r \Rightarrow y^r \in <x> >>. It follows that <<(y<x>)^r = <x> >> contradicting the assumption that the order of << y<x> >> is << p >>.
''Proof''. Pick <math>x \in A</math>. If <math>p</math> divides the order of <math>x</math> then we have <math>x^{np} = e</math> for some <math>n</math>. It follows that <math>(x^n)^p = e</math>. We then have that the order of <math>x^n</math> is <math>p</math>. If <math>p</math> does not divide the order of <math>p</math>, then consider <math>A / <x> </math>. Since <math>A</math> is abelian, <math> <x> </math> is a normal subgroup. We have that <math>p</math> divides <math>|A/<x>|</math>, and <math>|A / <x>| < |A|</math>. We then induct. Let <math> y<x> </math> have order <math>p</math>, that is <math> (y<x>)^p = <x> </math>. We then have that <math> y^p = x^k </math> for some <math> k </math>. We write <math> |<y>| = np + r </math> where <math> 0 \leq p < r </math>. We then have <math> e = y^{|<y>|} = y^{np + r} = x^{nkp}y^r \Rightarrow y^r \in <x> </math>. It follows that <math>(y<x>)^r = <x> </math> contradicting the assumption that the order of <math> y<x> </math> is <math> p </math>.




; Sylow set
; Sylow set
: If <<|G| = p^k m>> for <<m \not\equiv 0\ \mod\ p>> then <<Syl_p(G) = \{P \leq G : |P| = p^k>>.
: If <math>|G| = p^k m</math> for <math>m \not\equiv 0\ \mod\ p</math> then <math>Syl_p(G) = \{P \leq G : |P| = p^k</math>.


; Sylow I
; Sylow I
: <<Syl_p(G) \neq \emptyset>>
: <math>Syl_p(G) \neq \emptyset</math>


We proceed by induction on the oder of $p$. Assume the claim holds for all groups of order less than $|G|$. <span style="color:green">[Dror: "Stare at the class equation.]</span> Since <<|G| \equiv 0\ \mod\ p>> we have either:
We proceed by induction on the oder of $p$. Assume the claim holds for all groups of order less than $|G|$. <span style="color:green">[Dror: "Stare at the class equation.]</span> Since <math>|G| \equiv 0\ \mod\ p</math> we have either:
* <<|G| \equiv 0\ \mod\ p>> and <<\sum |G|/|Stab(x_i)| \equiv 0\ \mod\ p>>.
* <math>|G| \equiv 0\ \mod\ p</math> and <math>\sum |G|/|Stab(x_i)| \equiv 0\ \mod\ p</math>.
* <<|G| \equiv 0\ \not\mod\ p>> and <<\sum |G|/|Stab(x_i)| \not\equiv 0\ \mod\ p>>.
* <math>|G| \equiv 0\ \not\mod\ p</math> and <math>\sum |G|/|Stab(x_i)| \not\equiv 0\ \mod\ p</math>.


If <<|Z(G)| \not\equiv 0\ \mod p>> then there exists <<x_i>> such that <<|G|/|Stab(x_i)| \not\equiv 0\ \mod\ p>>. Thus <<p^k>> divides <<|Stab(x_i)|>>. We have that <<|Stab(x_i)| < |G|>> <span style="color:green">[Why happens here?]</span> We then have that <<p^k \leq Stab(x_i) < |G|>> and by induction there is <<|P| = p^k>> such that <<P \leq Stab(x_i)>>. It follows <<P \leq Stab(x_i) \leq G>>. We've obtained the Sylow <<p>>-subgroup.
If <math>|Z(G)| \not\equiv 0\ \mod p</math> then there exists <math>x_i</math> such that <math>|G|/|Stab(x_i)| \not\equiv 0\ \mod\ p</math>. Thus <math>p^k</math> divides <math>|Stab(x_i)|</math>. We have that <math>|Stab(x_i)| < |G|</math> <span style="color:green">[Why happens here?]</span> We then have that <math>p^k \leq Stab(x_i) < |G|</math> and by induction there is <math>|P| = p^k</math> such that <math>P \leq Stab(x_i)</math>. It follows <math>P \leq Stab(x_i) \leq G</math>. We've obtained the Sylow <math>p</math>-subgroup.


WIf <<|Z(G)| \equiv 0\ \mod p>> then by Cauchy's Lemma, there is <<x \in Z(G)>> with <<|<x>| = p>>. Consider the group << G / <x> >>. By the induction hypothesis there is << P' \leq G/<x> >> where <<|P'| = p^{k-1}>>. Then, there is the canonical projection << \pi : G \rightarrow G/<x> >>. By the fourth isomorphism theory << P = \pi^{-1}(P') \leq G >> and << |\pi^{-1}(P')| = p(p^{k-1}) = p^k >>.
WIf <math>|Z(G)| \equiv 0\ \mod p</math> then by Cauchy's Lemma, there is <math>x \in Z(G)</math> with <math>|<x>| = p</math>. Consider the group <math> G / <x> </math>. By the induction hypothesis there is <math> P' \leq G/<x> </math> where <math>|P'| = p^{k-1}</math>. Then, there is the canonical projection <math> \pi : G \rightarrow G/<x> </math>. By the fourth isomorphism theory <math> P = \pi^{-1}(P') \leq G </math> and <math> |\pi^{-1}(P')| = p(p^{k-1}) = p^k </math>.


; Sylow 2
; Sylow 2
: Every Sylow <<p>>-subgroup of <<G> is conjugate. Moreover, every <<p>>-subgroup is contained in a Sylow <<p>>-subgroup.
: Every Sylow <math>p</math>-subgroup of <math>G> is conjugate. Moreover, every <math>p</math>-subgroup is contained in a Sylow <math>p</math>-subgroup.


; Sylow 3
; Sylow 3
: Let <<n_p(G) = |Syl_p(G)|>>. We have <<n_p \equiv 0\ \mod\ |G|>> and <<n_p \equiv 1\ \mod\ p>>.
: Let <math>n_p(G) = |Syl_p(G)|</math>. We have <math>n_p \equiv 0\ \mod\ |G|</math> and <math>n_p \equiv 1\ \mod\ p</math>.


; A Nearly Tautological Lemma
; A Nearly Tautological Lemma
: If <<P \in Syl_p(G)>> and <<H \lea N(P)>> is a <<p>>-group, then <<H \leq P>>.
: If <math>P \in Syl_p(G)</math> and <math>H \lea N(P)</math> is a <math>p</math>-group, then <math>H \leq P</math>.
: If <<x \in G>> has <<|<x>| = p^k>> and <<x \in N(P)>> then <<x \in P>>.
: If <math>x \in G</math> has <math>|<x>| = p^k</math> and <math>x \in N(P)</math> then <math>x \in P</math>.


<span style="color:green">[Dror: "This lemma is nearly tautological but it is only nearly tautological once you understand that it is nearly tautological." Parker: "A tautology?"]
<span style="color:green">[Dror: "This lemma is nearly tautological but it is only nearly tautological once you understand that it is nearly tautological." Parker: "A tautology?"]


We show the first statement. We have that <<|P / P \cap H| = p^k>> since <<P>> is a <<p>>-group. We then know that <<PH / H \simeq P / P \cap H>> by the second isomorphism theorem. It foolows that <<|PH| = p^{k'}>>. But since <<P>> is maximal, we have <<P = PH>> and thus <<H \subseteq P>>. The first statement implies the second by taking <<H = <x> >>.
We show the first statement. We have that <math>|P / P \cap H| = p^k</math> since <math>P</math> is a <math>p</math>-group. We then know that <math>PH / H \simeq P / P \cap H</math> by the second isomorphism theorem. It foolows that <math>|PH| = p^{k'}</math>. But since <math>P</math> is maximal, we have <math>P = PH</math> and thus <math>H \subseteq P</math>. The first statement implies the second by taking <math>H = <x> </math>.




Line 88: Line 88:
GROUPS OF ORDER 15
GROUPS OF ORDER 15


If <<|G| = 15>> then <<n_3 \equiv 0\ \mod\ 15>> and <<n_3 \equiv 1\ \mod\ 3>>. These imply <<n_3 = 1>>. Moreover, <<n_5 \equiv 0\ \mod\ 15>> and <<n_5 \equiv 1\ \mod\ 5>>. These imply <<n_5 = 1>>. Thus we have <<P_3>> a normal <<3>>-subgroup. Moreover, we have <<P_5>> a normal <<5>>-subgroup. This tells us a lot about the group.
If <math>|G| = 15</math> then <math>n_3 \equiv 0\ \mod\ 15</math> and <math>n_3 \equiv 1\ \mod\ 3</math>. These imply <math>n_3 = 1</math>. Moreover, <math>n_5 \equiv 0\ \mod\ 15</math> and <math>n_5 \equiv 1\ \mod\ 5</math>. These imply <math>n_5 = 1</math>. Thus we have <math>P_3</math> a normal <math>3</math>-subgroup. Moreover, we have <math>P_5</math> a normal <math>5</math>-subgroup. This tells us a lot about the group.

Revision as of 15:07, 6 October 2011

Theorem
Every [math]\displaystyle{ G }[/math]-set is a disjoint union of "transitive [math]\displaystyle{ G }[/math]-sets"
Theorem
If [math]\displaystyle{ X }[/math] is a transitive [math]\displaystyle{ G }[/math]-set and [math]\displaystyle{ x \in X }[/math] then [math]\displaystyle{ X \simeq G/Stab(x) }[/math] where the isomorphism an isomorphism of [math]\displaystyle{ G }[/math]-sets.
Transitive [math]\displaystyle{ G }[/math]-set
A [math]\displaystyle{ G }[/math]-set [math]\displaystyle{ X }[/math] is transitive is [math]\displaystyle{ \forall_{x,y \in X} \exits_{g \in G}\ st.\ gx = y }[/math].
Stabilizer of a point
We write [math]\displaystyle{ Stab(x) = \{g \in G : gx = x\} }[/math] for the stabilizer subgroup of $x$.

Proof We define an equivalence relation [math]\displaystyle{ x \sim y \iff \exists_{g \in G} gx = y }[/math]. This relation is reflexive since [math]\displaystyle{ x = ex }[/math] and thus [math]\displaystyle{ x \sim x }[/math]. This relation is symmetric since [math]\displaystyle{ y = gx }[/math] implies [math]\displaystyle{ g^{-1}y = x }[/math]. This relation is transitive, since if [math]\displaystyle{ x = gy }[/math] and [math]\displaystyle{ y = hz }[/math] then [math]\displaystyle{ x = ghz }[/math]. It follows that [math]\displaystyle{ X = \coprod_{i \in I} Gx_{i} }[/math] where [math]\displaystyle{ Gx_i }[/math] denote the orbit of a point [math]\displaystyle{ x_i }[/math].

We then claim that [math]\displaystyle{ Gx_i }[/math] is a transitive [math]\displaystyle{ G }[/math]-set. [Dror: "[This fact] is too easy."]

We show that [math]\displaystyle{ Gx }[/math] is isomorphic to [math]\displaystyle{ G / Stab(x) }[/math] as a [math]\displaystyle{ G }[/math]-set.

We produce two morphism [math]\displaystyle{ \Psi : Gx \rightarrow G/Stab(x) }[/math] and [math]\displaystyle{ \Phi : G/Stab(x) \rightarrow Gx }[/math].

To define [math]\displaystyle{ \Psi }[/math] there is only one thing we can do. We have [math]\displaystyle{ y \in Gx \Rightarrow y = gx }[/math] and then we define [math]\displaystyle{ \Psi(y) = g Stab(x) }[/math]. We check that this map is well defined. If [math]\displaystyle{ y = gx = g'x }[/math] then [math]\displaystyle{ g^{-1}g'x = x }[/math] and hence [math]\displaystyle{ g^{-1}g \in Stab(x) }[/math]. It follows that [math]\displaystyle{ gStab(x) = g'Stab(x) }[/math]. Thus [math]\displaystyle{ \Psi }[/math] is well defined.

To define [math]\displaystyle{ \Phi }[/math] we take [math]\displaystyle{ gStab(x) \in G/Stab(x) }[/math] and define [math]\displaystyle{ \Phi(gStab(x)) = gx }[/math]. We show that this map is well defined. If [math]\displaystyle{ gStab(x) = g'Stab(x) }[/math] then [math]\displaystyle{ g^{-1}g' \in Stab(x) }[/math] and hence [math]\displaystyle{ g^{-1}g'x = x }[/math]. It follows that [math]\displaystyle{ gx = g'x }[/math] and hence [math]\displaystyle{ \Phi }[/math] is well defined.

We need to check that [math]\displaystyle{ \Psi }[/math] and [math]\displaystyle{ \Phi }[/math] are mutually inverse and [math]\displaystyle{ G }[/math]-set morphisms. We quickly check that [math]\displaystyle{ \Phi }[/math] is a [math]\displaystyle{ G }[/math]-set morphism. If [math]\displaystyle{ y = gx }[/math] and [math]\displaystyle{ g_1 \in G }[/math] then [math]\displaystyle{ g_1\Psi(y) = g_1(gStab(x)) = (g_1g)Stab(x) }[/math]. Similarly, [math]\displaystyle{ \Psi(g_1y) = g'Stab(x) = (g_1g)Stab(x) }[/math]. The last inequality follows since we can take any [math]\displaystyle{ g' }[/math] such that [math]\displaystyle{ g'y = g_1y }[/math]. Why not take [math]\displaystyle{ g' = g_1g }[/math] -- since we know that works.

Theorem (Orbit-Stabilizer)
If [math]\displaystyle{ |X| \lt \infty }[/math] and [math]\displaystyle{ X = \coprod_{i \in I} Gx_i }[/math] then [math]\displaystyle{ |X| = \sum_{i} \frac{|G|}{Stab(x_i)} }[/math].

This is just a rewriting of the theorem above.

[math]\displaystyle{ p }[/math]-Group
A [math]\displaystyle{ p }[/math]-group is a group [math]\displaystyle{ G }[/math] with [math]\displaystyle{ |G| = p^k }[/math] for some [math]\displaystyle{ k }[/math].

[math]\displaystyle{ G = (Z/2Z)^3, (Z/2Z) \times (Z/4Z), Z/8Z, D_8, Q = \{\pm 1, \pm i, \pm j, \pm k : i^2 = j^2 = k^2 = -1, ij = k\} }[/math]

The last group [math]\displaystyle{ Q }[/math] is the famous unit quaternions -- They need a better description here.

Theorem
Any [math]\displaystyle{ p }[/math]-group has a non-trivial centre.

Let [math]\displaystyle{ G }[/math] act on itself by conjugation. Decompose [math]\displaystyle{ G = \coprod Gx_i }[/math]. Then, [math]\displaystyle{ |G| = \sum_{|Gx_i| = 1} 1 + \sum_{|Gx_i| \gt 1} \frac{|G|}{|Stab(x)|} }[/math] Observe that [math]\displaystyle{ |Gx_i|| = 1 }[/math] iff [math]\displaystyle{ x_i \in Z(G) }[/math]. It follows that [math]\displaystyle{ |G| = |Z(G)| + \sum_{|Gx_i| \gt 1} \frac{|G|}{|Stab(x)|} }[/math] The formula above is called "the class formula". We have that [math]\displaystyle{ |G| / |Stab(x)| = p^k }[/math] for some [math]\displaystyle{ 1 \lt k }[/math] since [math]\displaystyle{ Stab(x) }[/math] is a subgroup. It follows that [math]\displaystyle{ |G| \equiv 0\ \mod\ p }[/math] and [math]\displaystyle{ \sum_{|Gx_i| \gt 1} \frac{|G|}{|Stab(x_i)|} \equiv 0\ \mod\ p }[/math]. It follows that [math]\displaystyle{ |Z(G)| \equiv 0\ \mod\ p }[/math]. Since [math]\displaystyle{ e \in Z(G) }[/math] we have [math]\displaystyle{ 1 \leq |Z(G)| }[/math] and thus [math]\displaystyle{ p \leq |Z(G)| }[/math].

SYLOW

A prove a brief technical lemma, for fun, since we could deduce it from more high powered machinery which we don't have yet.

Cauchy's Lemma
If [math]\displaystyle{ A }[/math] is an abelian group and [math]\displaystyle{ p }[/math] divides [math]\displaystyle{ |A| }[/math], then there is an element of order [math]\displaystyle{ p }[/math] in [math]\displaystyle{ A }[/math].

Proof. Pick [math]\displaystyle{ x \in A }[/math]. If [math]\displaystyle{ p }[/math] divides the order of [math]\displaystyle{ x }[/math] then we have [math]\displaystyle{ x^{np} = e }[/math] for some [math]\displaystyle{ n }[/math]. It follows that [math]\displaystyle{ (x^n)^p = e }[/math]. We then have that the order of [math]\displaystyle{ x^n }[/math] is [math]\displaystyle{ p }[/math]. If [math]\displaystyle{ p }[/math] does not divide the order of [math]\displaystyle{ p }[/math], then consider [math]\displaystyle{ A / \lt x\gt }[/math]. Since [math]\displaystyle{ A }[/math] is abelian, [math]\displaystyle{ \lt x\gt }[/math] is a normal subgroup. We have that [math]\displaystyle{ p }[/math] divides [math]\displaystyle{ |A/\lt x\gt | }[/math], and [math]\displaystyle{ |A / \lt x\gt | \lt |A| }[/math]. We then induct. Let [math]\displaystyle{ y\lt x\gt }[/math] have order [math]\displaystyle{ p }[/math], that is [math]\displaystyle{ (y\lt x\gt )^p = \lt x\gt }[/math]. We then have that [math]\displaystyle{ y^p = x^k }[/math] for some [math]\displaystyle{ k }[/math]. We write [math]\displaystyle{ |\lt y\gt | = np + r }[/math] where [math]\displaystyle{ 0 \leq p \lt r }[/math]. We then have [math]\displaystyle{ e = y^{|\lt y\gt |} = y^{np + r} = x^{nkp}y^r \Rightarrow y^r \in \lt x\gt }[/math]. It follows that [math]\displaystyle{ (y\lt x\gt )^r = \lt x\gt }[/math] contradicting the assumption that the order of [math]\displaystyle{ y\lt x\gt }[/math] is [math]\displaystyle{ p }[/math].


Sylow set
If [math]\displaystyle{ |G| = p^k m }[/math] for [math]\displaystyle{ m \not\equiv 0\ \mod\ p }[/math] then [math]\displaystyle{ Syl_p(G) = \{P \leq G : |P| = p^k }[/math].
Sylow I
[math]\displaystyle{ Syl_p(G) \neq \emptyset }[/math]

We proceed by induction on the oder of $p$. Assume the claim holds for all groups of order less than $|G|$. [Dror: "Stare at the class equation.] Since [math]\displaystyle{ |G| \equiv 0\ \mod\ p }[/math] we have either:

  • [math]\displaystyle{ |G| \equiv 0\ \mod\ p }[/math] and [math]\displaystyle{ \sum |G|/|Stab(x_i)| \equiv 0\ \mod\ p }[/math].
  • [math]\displaystyle{ |G| \equiv 0\ \not\mod\ p }[/math] and [math]\displaystyle{ \sum |G|/|Stab(x_i)| \not\equiv 0\ \mod\ p }[/math].

If [math]\displaystyle{ |Z(G)| \not\equiv 0\ \mod p }[/math] then there exists [math]\displaystyle{ x_i }[/math] such that [math]\displaystyle{ |G|/|Stab(x_i)| \not\equiv 0\ \mod\ p }[/math]. Thus [math]\displaystyle{ p^k }[/math] divides [math]\displaystyle{ |Stab(x_i)| }[/math]. We have that [math]\displaystyle{ |Stab(x_i)| \lt |G| }[/math] [Why happens here?] We then have that [math]\displaystyle{ p^k \leq Stab(x_i) \lt |G| }[/math] and by induction there is [math]\displaystyle{ |P| = p^k }[/math] such that [math]\displaystyle{ P \leq Stab(x_i) }[/math]. It follows [math]\displaystyle{ P \leq Stab(x_i) \leq G }[/math]. We've obtained the Sylow [math]\displaystyle{ p }[/math]-subgroup.

WIf [math]\displaystyle{ |Z(G)| \equiv 0\ \mod p }[/math] then by Cauchy's Lemma, there is [math]\displaystyle{ x \in Z(G) }[/math] with [math]\displaystyle{ |\lt x\gt | = p }[/math]. Consider the group [math]\displaystyle{ G / \lt x\gt }[/math]. By the induction hypothesis there is [math]\displaystyle{ P' \leq G/\lt x\gt }[/math] where [math]\displaystyle{ |P'| = p^{k-1} }[/math]. Then, there is the canonical projection [math]\displaystyle{ \pi : G \rightarrow G/\lt x\gt }[/math]. By the fourth isomorphism theory [math]\displaystyle{ P = \pi^{-1}(P') \leq G }[/math] and [math]\displaystyle{ |\pi^{-1}(P')| = p(p^{k-1}) = p^k }[/math].

Sylow 2
Every Sylow [math]\displaystyle{ p }[/math]-subgroup of [math]\displaystyle{ G\gt is conjugate. Moreover, every \lt math\gt p }[/math]-subgroup is contained in a Sylow [math]\displaystyle{ p }[/math]-subgroup.
Sylow 3
Let [math]\displaystyle{ n_p(G) = |Syl_p(G)| }[/math]. We have [math]\displaystyle{ n_p \equiv 0\ \mod\ |G| }[/math] and [math]\displaystyle{ n_p \equiv 1\ \mod\ p }[/math].
A Nearly Tautological Lemma
If [math]\displaystyle{ P \in Syl_p(G) }[/math] and [math]\displaystyle{ H \lea N(P) }[/math] is a [math]\displaystyle{ p }[/math]-group, then [math]\displaystyle{ H \leq P }[/math].
If [math]\displaystyle{ x \in G }[/math] has [math]\displaystyle{ |\lt x\gt | = p^k }[/math] and [math]\displaystyle{ x \in N(P) }[/math] then [math]\displaystyle{ x \in P }[/math].

[Dror: "This lemma is nearly tautological but it is only nearly tautological once you understand that it is nearly tautological." Parker: "A tautology?"]

We show the first statement. We have that [math]\displaystyle{ |P / P \cap H| = p^k }[/math] since [math]\displaystyle{ P }[/math] is a [math]\displaystyle{ p }[/math]-group. We then know that [math]\displaystyle{ PH / H \simeq P / P \cap H }[/math] by the second isomorphism theorem. It foolows that [math]\displaystyle{ |PH| = p^{k'} }[/math]. But since [math]\displaystyle{ P }[/math] is maximal, we have [math]\displaystyle{ P = PH }[/math] and thus [math]\displaystyle{ H \subseteq P }[/math]. The first statement implies the second by taking [math]\displaystyle{ H = \lt x\gt }[/math].


GROUPS OF ORDER 15

If [math]\displaystyle{ |G| = 15 }[/math] then [math]\displaystyle{ n_3 \equiv 0\ \mod\ 15 }[/math] and [math]\displaystyle{ n_3 \equiv 1\ \mod\ 3 }[/math]. These imply [math]\displaystyle{ n_3 = 1 }[/math]. Moreover, [math]\displaystyle{ n_5 \equiv 0\ \mod\ 15 }[/math] and [math]\displaystyle{ n_5 \equiv 1\ \mod\ 5 }[/math]. These imply [math]\displaystyle{ n_5 = 1 }[/math]. Thus we have [math]\displaystyle{ P_3 }[/math] a normal [math]\displaystyle{ 3 }[/math]-subgroup. Moreover, we have [math]\displaystyle{ P_5 }[/math] a normal [math]\displaystyle{ 5 }[/math]-subgroup. This tells us a lot about the group.