11-1100-Pgadey-Lect5: Difference between revisions

From Drorbn
Jump to navigationJump to search
No edit summary
 
No edit summary
Line 1: Line 1:
!! Simplicity of $A_n$.
!! Simplicity of <math>A_n </math>.


;Claim
;Claim
: $A_n$ is simple for $n \neq 4$.
: <math>A_n </math> is simple for <math>n \neq 4 </math>.
For $n = 1$ we have that $A_n = \{e\}$ which is simple.
For <math>n = 1 </math> we have that <math>A_n = \{e\} </math> which is simple.
For $n=2$ we have that $S_n = \{(12), e\}$, and once again $A_n = \{e\}$.
For <math>n=2 </math> we have that <math>S_n = \{(12), e\} </math>, and once again <math>A_n = \{e\} </math>.
For $n = 3$ we have that $A_n = \{e, (123), (132)\} \simeq Z/3Z$ which is of prime order, and hence has no proper subgroups (by Lagrange). It follows that it has no normal proper subgroups.
For <math>n = 3 </math> we have that <math>A_n = \{e, (123), (132)\} \simeq Z/3Z </math> which is of prime order, and hence has no proper subgroups (by Lagrange). It follows that it has no normal proper subgroups.


For $n = 4$ we have @@color: red ; Dror's Favourite Homomorphism @@
For <math>n = 4 </math> we have @@color: red ; Dror's Favourite Homomorphism @@


We proceed with some unmotivated computations,
We proceed with some unmotivated computations,
Line 13: Line 13:


Some computations:
Some computations:
$$ (12)(23) = (123) \quad \quad (12)(34) = (123)(234) $$
</math> </math> (12)(23) = (123) \quad \quad (12)(34) = (123)(234) <math> </math>
These are the main ingredients of the proof
These are the main ingredients of the proof


; Lemma 1
; Lemma 1
: $A_n$ is generated by three cycles in $S_n$. That is, $A_n = \langle \{ (ijk) \in S_n \} \rangle$.
: <math>A_n </math> is generated by three cycles in <math>S_n </math>. That is, <math>A_n = \langle \{ (ijk) \in S_n \} \rangle </math>.


We have that each element of $A_n$ is the product of an even number of transpositions@@color:green ; (braid diagrams, computation with polynomials, etc)@@. But we can replace a pair of 2-cycles with one or two 3-cycles by the computation above. It follows that any element of the alternating group can be rewritten as a product of 3-cycles.
We have that each element of <math>A_n </math> is the product of an even number of transpositions@@color:green ; (braid diagrams, computation with polynomials, etc)@@. But we can replace a pair of 2-cycles with one or two 3-cycles by the computation above. It follows that any element of the alternating group can be rewritten as a product of 3-cycles.


; Lemma 2
; Lemma 2
: If $N \triangleleft A_n$ contains a 3-cycle then $N=A_n$.
: If <math>N \triangleleft A_n </math> contains a 3-cycle then <math>N=A_n </math>.
Up to changing notation, we have that $(123) \in N$. We show that $(123)^\sigma \in N$ for any $\sigma \in S_n$. By normality, we have this for $\sigma \in A_n$. If $\sigma \not\in A_n$ we can write $\sigma = (12)\sigma'$ for $\sigma \in A_n$. But then $(123)^{(12)} = (123)^2$ and thus
Up to changing notation, we have that <math>(123) \in N </math>. We show that <math>(123)^\sigma \in N </math> for any <math>\sigma \in S_n </math>. By normality, we have this for <math>\sigma \in A_n </math>. If <math>\sigma \not\in A_n </math> we can write <math>\sigma = (12)\sigma' </math> for <math>\sigma \in A_n </math>. But then <math>(123)^{(12)} = (123)^2 </math> and thus
$$(123)^\sigma = \left( (123)^{(12)} \right)^{\sigma'} \in N $$
</math> </math>(123)^\sigma = \left( (123)^{(12)} \right)^{\sigma'} \in N <math> </math>
Since all 3-cycles are conjugate to $(123)$ we have that all 3-cycles are in $N$. It follows by Lemma 1 that $N = A_n$.
Since all 3-cycles are conjugate to <math>(123) </math> we have that all 3-cycles are in <math>N </math>. It follows by Lemma 1 that <math>N = A_n </math>.


;//Case I//
;//Case I//
: $N$ contains a cycle of length $\geq 4$.
: <math>N </math> contains a cycle of length <math>\geq 4 </math>.
$$ \sigma= (123456)\sigma' \in N \Rightarrow \sigma^{-1} (123) \sigma (123)^{-1} = (136) \in N $$
</math> </math> \sigma= (123456)\sigma' \in N \Rightarrow \sigma^{-1} (123) \sigma (123)^{-1} = (136) \in N <math> </math>
The claim then follows by Lemma 2.
The claim then follows by Lemma 2.


;//Case II//
;//Case II//
: If $N$ contains an with two cycles of length 3.
: If <math>N </math> contains an with two cycles of length 3.
$$ \sigma = (123)(456) \sigma' \in N \Rightarrow \sigma^{-1}(124)\sigma(124)^{-1} = (14263) \in N$$
</math> </math> \sigma = (123)(456) \sigma' \in N \Rightarrow \sigma^{-1}(124)\sigma(124)^{-1} = (14263) \in N </math> </math>
The claim then follows by //Case I//.
The claim then follows by //Case I//.


;//Case III//
;//Case III//
: If $N$ contains $\sigma = (123)(\textrm{a product of disjoint 2-cycles})$
: If <math>N </math> contains <math>\sigma = (123)(\textrm{a product of disjoint 2-cycles}) </math>
We have that $\sigma^2 = (132) \in N$. The claim then follows by Lemma 1.
We have that <math>\sigma^2 = (132) \in N </math>. The claim then follows by Lemma 1.


;//Case IV//
;//Case IV//
: If every element of $N$ is a product of disjoint 2-cycles.
: If every element of <math>N </math> is a product of disjoint 2-cycles.
We have that
We have that
$$\sigma = (12)(34)\sigma' \Rightarrow \sigma^{-1}(123)\sigma(123)^{-1} = (13)(24) = \tau \in N$$
</math> </math>\sigma = (12)(34)\sigma' \Rightarrow \sigma^{-1}(123)\sigma(123)^{-1} = (13)(24) = \tau \in N </math> </math>
But then $\tau^{-1}(125)\tau(125)^{-1} = (13452) \in N$.
But then <math>\tau^{-1}(125)\tau(125)^{-1} = (13452) \in N </math>.
The claim then follows by Case 1.
The claim then follows by Case 1.


@@color:green ; //[Note: This last case is the _only_ place where we really use this mystical fifth element. Without it, this last step wouldn't go through. ]// @@
@@color:green ; //[Note: This last case is the _only_ place where we really use this mystical fifth element. Without it, this last step wouldn't go through. ]// @@


!! Throwback: $S_4$ contains no normal $H$ such that $H \simeq S_3$.
!! Throwback: <math>S_4 </math> contains no normal <math>H </math> such that <math>H \simeq S_3 </math>.


$S_3$ has an element of order three, therefore $H$ does. We then conjugate to get all the three cycles. Then $H$ is too big.
</math>S_3 </math> has an element of order three, therefore <math>H </math> does. We then conjugate to get all the three cycles. Then <math>H </math> is too big.


//[ Suppose that $(123) \in H$, then
//[ Suppose that <math>(123) \in H </math>, then


$$ S = \{ e, (123), (132), (124), (142), (134), (143), (234), (243)\} \subset H $$
</math> </math> S = \{ e, (123), (132), (124), (142), (134), (143), (234), (243)\} \subset H <math> </math>
Which implies that $|S_3| = 6 < 9 \leq |H|$, but since $H \simeq S_3$ we have $|H| = |S_3|$, a contradiction.]//
Which implies that <math>|S_3| = 6 < 9 \leq |H| </math>, but since <math>H \simeq S_3 </math> we have <math>|H| = |S_3| </math>, a contradiction.]//


!!Group Actions.
!!Group Actions.


; A group $G$ acting on a set $X$
; A group <math>G </math> acting on a set <math>X </math>
A left (resp. right) group action of $G$ on $X$ is a binary map $G \times X \rightarrow X$ denotes by $(g,x) \mapsto gx$ satisfying:
A left (resp. right) group action of <math>G </math> on <math>X </math> is a binary map <math>G \times X \rightarrow X </math> denotes by <math>(g,x) \mapsto gx </math> satisfying:
* $ex = x$ (resp. $xe = x$)
* <math>ex = x </math> (resp. <math>xe = x </math>)
* $(g_1g_2)x = g_1(g_2x)$ (resp $(xg_1)g_2$)
* <math>(g_1g_2)x = g_1(g_2x) </math> (resp <math>(xg_1)g_2 </math>)
* [The above implies $ex = x$ and $gy = x \Rightarrow g^{-1}y=x$.]
* [The above implies <math>ex = x </math> and <math>gy = x \Rightarrow g^{-1}y=x </math>.]


!! Examples of group actions
!! Examples of group actions
* $G$ acting on itself by conjugation (a right action). $(g,g') \mapsto g^{g'}$
* <math>G </math> acting on itself by conjugation (a right action). <math>(g,g') \mapsto g^{g'} </math>
* Let $S(X)$ be the set of bijections from $X$ to $X$, with group structure given by composition. We then have an $S(X)$-action of $X$ given $x \mapsto gx : X \rightarrow X \in S(X)$
* Let <math>S(X) </math> be the set of bijections from <math>X </math> to <math>X </math>, with group structure given by composition. We then have an <math>S(X) </math>-action of <math>X </math> given <math>x \mapsto gx : X \rightarrow X \in S(X) </math>
@@color:green ; //[Where does the shirt come into the business?! ]// @@
@@color:green ; //[Where does the shirt come into the business?! ]// @@
* If $G = (\mathcal{G}, \cdot)$ is a group where $\mathcal{S}$ is the underlying set of $G$ and $\cdot$ is the group multiplication. We have an action: $(g,s) = g \cdot s$ this gives a map $G \rightarrow S(\mathcal{G})$.
* If <math>G = (\mathcal{G}, \cdot) </math> is a group where <math>\mathcal{S} </math> is the underlying set of <math>G </math> and <math>\cdot </math> is the group multiplication. We have an action: <math>(g,s) = g \cdot s </math> this gives a map <math>G \rightarrow S(\mathcal{G}) </math>.
* $SO(n)$ is the group of orientation preserving symmetries of the $(n-1)$-dimensional sphere. We have that $SO(2) \leq SO(3)$ as the subgroup of rotations that fix the north and south pole. There is a map $SO(3)/SO(2) \rightarrow S^2$ given by looking at the image of the north pole.
* <math>SO(n) </math> is the group of orientation preserving symmetries of the <math>(n-1) </math>-dimensional sphere. We have that <math>SO(2) \leq SO(3) </math> as the subgroup of rotations that fix the north and south pole. There is a map <math>SO(3)/SO(2) \rightarrow S^2 </math> given by looking at the image of the north pole.
* If $H \leq G$ which may not be normal, then we have an action of $G$ on $G/H$ given by $g(xH) = (gx)H$.
* If <math>H \leq G </math> which may not be normal, then we have an action of <math>G </math> on <math>G/H </math> given by <math>g(xH) = (gx)H </math>.
* We have $S_{n-1} \leq S_n$ and $|S_n / S_{n-1}| = n!/(n-1)! = n$.
* We have <math>S_{n-1} \leq S_n </math> and <math>|S_n / S_{n-1}| = n!/(n-1)! = n </math>.
; Exercise
; Exercise
: Show that $S_n$ acting on $\{1, 2, \dots, n\}$ and $S_n / S_{n-1}$ are isomorphic $S_n$-sets.
: Show that <math>S_n </math> acting on <math>\{1, 2, \dots, n\} </math> and <math>S_n / S_{n-1} </math> are isomorphic <math>S_n </math>-sets.


@@color:green ; //[Dror violently resists rigorously defining a category. Gives a little speech about "things" and "arrows". Gives an example of taking a topological space $T$ and then looking at the space of paths with identities given by staying still, and composition of paths given by concatenation.]//@@
@@color:green ; //[Dror violently resists rigorously defining a category. Gives a little speech about "things" and "arrows". Gives an example of taking a topological space <math>T </math> and then looking at the space of paths with identities given by staying still, and composition of paths given by concatenation.]//@@


; Claim
; Claim
: Left $G$-sets form a category.
: Left <math>G </math>-sets form a category.


@@color:green ; //[Dror: I'm being a little bit biased. I prefer the left over the right. Parker: Propaganda? ]//@@
@@color:green ; //[Dror: I'm being a little bit biased. I prefer the left over the right. Parker: Propaganda? ]//@@


The objects of the category are actions $G \times X \rightarrow X$. The morphisms, if we have $X$ and $Y$ are $G$-sets, a morphism of $G$-sets is a function $\gamma : X \rightarrow Y$ such that $\gamma(gx) = g(\gamma(x))$.
The objects of the category are actions <math>G \times X \rightarrow X </math>. The morphisms, if we have <math>X </math> and <math>Y </math> are <math>G </math>-sets, a morphism of <math>G </math>-sets is a function <math>\gamma : X \rightarrow Y </math> such that <math>\gamma(gx) = g(\gamma(x)) </math>.


; Isomorphism of $G$-sets
; Isomorphism of <math>G </math>-sets
: An isomorphism of $G$-sets is a morphism which is bijective.
: An isomorphism of <math>G </math>-sets is a morphism which is bijective.


; Silly fact
; Silly fact
: If $X_1$ and $X_2$ are $G$-sets then so is $X_1 \coprod X_2$, the disjoint union of the two.
: If <math>X_1 </math> and <math>X_2 </math> are <math>G </math>-sets then so is <math>X_1 \coprod X_2 </math>, the disjoint union of the two.


the next statement combines the silly observation above, with the construction of an action of $G$ on $G/H$.
the next statement combines the silly observation above, with the construction of an action of <math>G </math> on <math>G/H </math>.
;
;
Claim
Claim
: Any $G$-set $X$ is a disjoint unions of the ``transitive $G$-sets''. And If $Y$ is a transitive $G$-set, then $Y \simeq G/H$ for some $H \leq G$.
: Any <math>G </math>-set <math>X </math> is a disjoint unions of the ``transitive <math>G </math>-sets''. And If <math>Y </math> is a transitive <math>G </math>-set, then <math>Y \simeq G/H </math> for some <math>H \leq G </math>.

Revision as of 19:49, 4 October 2011

!! Simplicity of [math]\displaystyle{ A_n }[/math].

Claim
[math]\displaystyle{ A_n }[/math] is simple for [math]\displaystyle{ n \neq 4 }[/math].

For [math]\displaystyle{ n = 1 }[/math] we have that [math]\displaystyle{ A_n = \{e\} }[/math] which is simple. For [math]\displaystyle{ n=2 }[/math] we have that [math]\displaystyle{ S_n = \{(12), e\} }[/math], and once again [math]\displaystyle{ A_n = \{e\} }[/math]. For [math]\displaystyle{ n = 3 }[/math] we have that [math]\displaystyle{ A_n = \{e, (123), (132)\} \simeq Z/3Z }[/math] which is of prime order, and hence has no proper subgroups (by Lagrange). It follows that it has no normal proper subgroups.

For [math]\displaystyle{ n = 4 }[/math] we have @@color: red ; Dror's Favourite Homomorphism @@

We proceed with some unmotivated computations, @@color: green ; //[ This proof is not a deep conceptual proof. It is the product of a lot of playing around with cycles, and generators. This is much like a solution to the Rubik's cube, it naturally arises from a lot of playing around -- but is not conceptually deep at all.]// @@

Some computations: </math> </math> (12)(23) = (123) \quad \quad (12)(34) = (123)(234) [math]\displaystyle{ }[/math] These are the main ingredients of the proof

Lemma 1
[math]\displaystyle{ A_n }[/math] is generated by three cycles in [math]\displaystyle{ S_n }[/math]. That is, [math]\displaystyle{ A_n = \langle \{ (ijk) \in S_n \} \rangle }[/math].

We have that each element of [math]\displaystyle{ A_n }[/math] is the product of an even number of transpositions@@color:green ; (braid diagrams, computation with polynomials, etc)@@. But we can replace a pair of 2-cycles with one or two 3-cycles by the computation above. It follows that any element of the alternating group can be rewritten as a product of 3-cycles.

Lemma 2
If [math]\displaystyle{ N \triangleleft A_n }[/math] contains a 3-cycle then [math]\displaystyle{ N=A_n }[/math].

Up to changing notation, we have that [math]\displaystyle{ (123) \in N }[/math]. We show that [math]\displaystyle{ (123)^\sigma \in N }[/math] for any [math]\displaystyle{ \sigma \in S_n }[/math]. By normality, we have this for [math]\displaystyle{ \sigma \in A_n }[/math]. If [math]\displaystyle{ \sigma \not\in A_n }[/math] we can write [math]\displaystyle{ \sigma = (12)\sigma' }[/math] for [math]\displaystyle{ \sigma \in A_n }[/math]. But then [math]\displaystyle{ (123)^{(12)} = (123)^2 }[/math] and thus </math> </math>(123)^\sigma = \left( (123)^{(12)} \right)^{\sigma'} \in N [math]\displaystyle{ }[/math] Since all 3-cycles are conjugate to [math]\displaystyle{ (123) }[/math] we have that all 3-cycles are in [math]\displaystyle{ N }[/math]. It follows by Lemma 1 that [math]\displaystyle{ N = A_n }[/math].

//Case I//
[math]\displaystyle{ N }[/math] contains a cycle of length [math]\displaystyle{ \geq 4 }[/math].
</math> </math> \sigma= (123456)\sigma' \in N \Rightarrow \sigma^{-1} (123) \sigma (123)^{-1} = (136) \in N [math]\displaystyle{   }[/math]

The claim then follows by Lemma 2.

//Case II//
If [math]\displaystyle{ N }[/math] contains an with two cycles of length 3.
</math> </math> \sigma = (123)(456) \sigma' \in N \Rightarrow \sigma^{-1}(124)\sigma(124)^{-1} = (14263) \in N </math> </math>

The claim then follows by //Case I//.

//Case III//
If [math]\displaystyle{ N }[/math] contains [math]\displaystyle{ \sigma = (123)(\textrm{a product of disjoint 2-cycles}) }[/math]

We have that [math]\displaystyle{ \sigma^2 = (132) \in N }[/math]. The claim then follows by Lemma 1.

//Case IV//
If every element of [math]\displaystyle{ N }[/math] is a product of disjoint 2-cycles.

We have that </math> </math>\sigma = (12)(34)\sigma' \Rightarrow \sigma^{-1}(123)\sigma(123)^{-1} = (13)(24) = \tau \in N </math> </math> But then [math]\displaystyle{ \tau^{-1}(125)\tau(125)^{-1} = (13452) \in N }[/math]. The claim then follows by Case 1.

@@color:green ; //[Note: This last case is the _only_ place where we really use this mystical fifth element. Without it, this last step wouldn't go through. ]// @@

!! Throwback: [math]\displaystyle{ S_4 }[/math] contains no normal [math]\displaystyle{ H }[/math] such that [math]\displaystyle{ H \simeq S_3 }[/math].

</math>S_3 </math> has an element of order three, therefore [math]\displaystyle{ H  }[/math] does. We then conjugate to get all the three cycles. Then [math]\displaystyle{ H  }[/math] is too big.

//[ Suppose that [math]\displaystyle{ (123) \in H }[/math], then

</math> </math> S = \{ e, (123), (132), (124), (142), (134), (143), (234), (243)\} \subset H [math]\displaystyle{   }[/math]

Which implies that [math]\displaystyle{ |S_3| = 6 \lt 9 \leq |H| }[/math], but since [math]\displaystyle{ H \simeq S_3 }[/math] we have [math]\displaystyle{ |H| = |S_3| }[/math], a contradiction.]//

!!Group Actions.

A group [math]\displaystyle{ G }[/math] acting on a set [math]\displaystyle{ X }[/math]

A left (resp. right) group action of [math]\displaystyle{ G }[/math] on [math]\displaystyle{ X }[/math] is a binary map [math]\displaystyle{ G \times X \rightarrow X }[/math] denotes by [math]\displaystyle{ (g,x) \mapsto gx }[/math] satisfying:

  • [math]\displaystyle{ ex = x }[/math] (resp. [math]\displaystyle{ xe = x }[/math])
  • [math]\displaystyle{ (g_1g_2)x = g_1(g_2x) }[/math] (resp [math]\displaystyle{ (xg_1)g_2 }[/math])
  • [The above implies [math]\displaystyle{ ex = x }[/math] and [math]\displaystyle{ gy = x \Rightarrow g^{-1}y=x }[/math].]

!! Examples of group actions

  • [math]\displaystyle{ G }[/math] acting on itself by conjugation (a right action). [math]\displaystyle{ (g,g') \mapsto g^{g'} }[/math]
  • Let [math]\displaystyle{ S(X) }[/math] be the set of bijections from [math]\displaystyle{ X }[/math] to [math]\displaystyle{ X }[/math], with group structure given by composition. We then have an [math]\displaystyle{ S(X) }[/math]-action of [math]\displaystyle{ X }[/math] given [math]\displaystyle{ x \mapsto gx : X \rightarrow X \in S(X) }[/math]

@@color:green ; //[Where does the shirt come into the business?! ]// @@

  • If [math]\displaystyle{ G = (\mathcal{G}, \cdot) }[/math] is a group where [math]\displaystyle{ \mathcal{S} }[/math] is the underlying set of [math]\displaystyle{ G }[/math] and [math]\displaystyle{ \cdot }[/math] is the group multiplication. We have an action: [math]\displaystyle{ (g,s) = g \cdot s }[/math] this gives a map [math]\displaystyle{ G \rightarrow S(\mathcal{G}) }[/math].
  • [math]\displaystyle{ SO(n) }[/math] is the group of orientation preserving symmetries of the [math]\displaystyle{ (n-1) }[/math]-dimensional sphere. We have that [math]\displaystyle{ SO(2) \leq SO(3) }[/math] as the subgroup of rotations that fix the north and south pole. There is a map [math]\displaystyle{ SO(3)/SO(2) \rightarrow S^2 }[/math] given by looking at the image of the north pole.
  • If [math]\displaystyle{ H \leq G }[/math] which may not be normal, then we have an action of [math]\displaystyle{ G }[/math] on [math]\displaystyle{ G/H }[/math] given by [math]\displaystyle{ g(xH) = (gx)H }[/math].
  • We have [math]\displaystyle{ S_{n-1} \leq S_n }[/math] and [math]\displaystyle{ |S_n / S_{n-1}| = n!/(n-1)! = n }[/math].
Exercise
Show that [math]\displaystyle{ S_n }[/math] acting on [math]\displaystyle{ \{1, 2, \dots, n\} }[/math] and [math]\displaystyle{ S_n / S_{n-1} }[/math] are isomorphic [math]\displaystyle{ S_n }[/math]-sets.

@@color:green ; //[Dror violently resists rigorously defining a category. Gives a little speech about "things" and "arrows". Gives an example of taking a topological space [math]\displaystyle{ T }[/math] and then looking at the space of paths with identities given by staying still, and composition of paths given by concatenation.]//@@

Claim
Left [math]\displaystyle{ G }[/math]-sets form a category.

@@color:green ; //[Dror: I'm being a little bit biased. I prefer the left over the right. Parker: Propaganda? ]//@@

The objects of the category are actions [math]\displaystyle{ G \times X \rightarrow X }[/math]. The morphisms, if we have [math]\displaystyle{ X }[/math] and [math]\displaystyle{ Y }[/math] are [math]\displaystyle{ G }[/math]-sets, a morphism of [math]\displaystyle{ G }[/math]-sets is a function [math]\displaystyle{ \gamma : X \rightarrow Y }[/math] such that [math]\displaystyle{ \gamma(gx) = g(\gamma(x)) }[/math].

Isomorphism of [math]\displaystyle{ G }[/math]-sets
An isomorphism of [math]\displaystyle{ G }[/math]-sets is a morphism which is bijective.
Silly fact
If [math]\displaystyle{ X_1 }[/math] and [math]\displaystyle{ X_2 }[/math] are [math]\displaystyle{ G }[/math]-sets then so is [math]\displaystyle{ X_1 \coprod X_2 }[/math], the disjoint union of the two.

the next statement combines the silly observation above, with the construction of an action of [math]\displaystyle{ G }[/math] on [math]\displaystyle{ G/H }[/math].

Claim
Any [math]\displaystyle{ G }[/math]-set [math]\displaystyle{ X }[/math] is a disjoint unions of the ``transitive [math]\displaystyle{ G }[/math]-sets. And If [math]\displaystyle{ Y }[/math] is a transitive [math]\displaystyle{ G }[/math]-set, then [math]\displaystyle{ Y \simeq G/H }[/math] for some [math]\displaystyle{ H \leq G }[/math].