11-1100-Pgadey-Lect5: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
!! Simplicity of |
!! Simplicity of <math>A_n </math>. |
||
;Claim |
;Claim |
||
: |
: <math>A_n </math> is simple for <math>n \neq 4 </math>. |
||
For |
For <math>n = 1 </math> we have that <math>A_n = \{e\} </math> which is simple. |
||
For |
For <math>n=2 </math> we have that <math>S_n = \{(12), e\} </math>, and once again <math>A_n = \{e\} </math>. |
||
For |
For <math>n = 3 </math> we have that <math>A_n = \{e, (123), (132)\} \simeq Z/3Z </math> which is of prime order, and hence has no proper subgroups (by Lagrange). It follows that it has no normal proper subgroups. |
||
For |
For <math>n = 4 </math> we have @@color: red ; Dror's Favourite Homomorphism @@ |
||
We proceed with some unmotivated computations, |
We proceed with some unmotivated computations, |
||
Line 13: | Line 13: | ||
Some computations: |
Some computations: |
||
</math> </math> (12)(23) = (123) \quad \quad (12)(34) = (123)(234) <math> </math> |
|||
These are the main ingredients of the proof |
These are the main ingredients of the proof |
||
; Lemma 1 |
; Lemma 1 |
||
: |
: <math>A_n </math> is generated by three cycles in <math>S_n </math>. That is, <math>A_n = \langle \{ (ijk) \in S_n \} \rangle </math>. |
||
We have that each element of |
We have that each element of <math>A_n </math> is the product of an even number of transpositions@@color:green ; (braid diagrams, computation with polynomials, etc)@@. But we can replace a pair of 2-cycles with one or two 3-cycles by the computation above. It follows that any element of the alternating group can be rewritten as a product of 3-cycles. |
||
; Lemma 2 |
; Lemma 2 |
||
: If |
: If <math>N \triangleleft A_n </math> contains a 3-cycle then <math>N=A_n </math>. |
||
Up to changing notation, we have that |
Up to changing notation, we have that <math>(123) \in N </math>. We show that <math>(123)^\sigma \in N </math> for any <math>\sigma \in S_n </math>. By normality, we have this for <math>\sigma \in A_n </math>. If <math>\sigma \not\in A_n </math> we can write <math>\sigma = (12)\sigma' </math> for <math>\sigma \in A_n </math>. But then <math>(123)^{(12)} = (123)^2 </math> and thus |
||
</math> </math>(123)^\sigma = \left( (123)^{(12)} \right)^{\sigma'} \in N <math> </math> |
|||
Since all 3-cycles are conjugate to |
Since all 3-cycles are conjugate to <math>(123) </math> we have that all 3-cycles are in <math>N </math>. It follows by Lemma 1 that <math>N = A_n </math>. |
||
;//Case I// |
;//Case I// |
||
: |
: <math>N </math> contains a cycle of length <math>\geq 4 </math>. |
||
</math> </math> \sigma= (123456)\sigma' \in N \Rightarrow \sigma^{-1} (123) \sigma (123)^{-1} = (136) \in N <math> </math> |
|||
The claim then follows by Lemma 2. |
The claim then follows by Lemma 2. |
||
;//Case II// |
;//Case II// |
||
: If |
: If <math>N </math> contains an with two cycles of length 3. |
||
</math> </math> \sigma = (123)(456) \sigma' \in N \Rightarrow \sigma^{-1}(124)\sigma(124)^{-1} = (14263) \in N </math> </math> |
|||
The claim then follows by //Case I//. |
The claim then follows by //Case I//. |
||
;//Case III// |
;//Case III// |
||
: If |
: If <math>N </math> contains <math>\sigma = (123)(\textrm{a product of disjoint 2-cycles}) </math> |
||
We have that |
We have that <math>\sigma^2 = (132) \in N </math>. The claim then follows by Lemma 1. |
||
;//Case IV// |
;//Case IV// |
||
: If every element of |
: If every element of <math>N </math> is a product of disjoint 2-cycles. |
||
We have that |
We have that |
||
</math> </math>\sigma = (12)(34)\sigma' \Rightarrow \sigma^{-1}(123)\sigma(123)^{-1} = (13)(24) = \tau \in N </math> </math> |
|||
But then |
But then <math>\tau^{-1}(125)\tau(125)^{-1} = (13452) \in N </math>. |
||
The claim then follows by Case 1. |
The claim then follows by Case 1. |
||
@@color:green ; //[Note: This last case is the _only_ place where we really use this mystical fifth element. Without it, this last step wouldn't go through. ]// @@ |
@@color:green ; //[Note: This last case is the _only_ place where we really use this mystical fifth element. Without it, this last step wouldn't go through. ]// @@ |
||
!! Throwback: |
!! Throwback: <math>S_4 </math> contains no normal <math>H </math> such that <math>H \simeq S_3 </math>. |
||
</math>S_3 </math> has an element of order three, therefore <math>H </math> does. We then conjugate to get all the three cycles. Then <math>H </math> is too big. |
|||
//[ Suppose that |
//[ Suppose that <math>(123) \in H </math>, then |
||
</math> </math> S = \{ e, (123), (132), (124), (142), (134), (143), (234), (243)\} \subset H <math> </math> |
|||
Which implies that |
Which implies that <math>|S_3| = 6 < 9 \leq |H| </math>, but since <math>H \simeq S_3 </math> we have <math>|H| = |S_3| </math>, a contradiction.]// |
||
!!Group Actions. |
!!Group Actions. |
||
; A group |
; A group <math>G </math> acting on a set <math>X </math> |
||
A left (resp. right) group action of |
A left (resp. right) group action of <math>G </math> on <math>X </math> is a binary map <math>G \times X \rightarrow X </math> denotes by <math>(g,x) \mapsto gx </math> satisfying: |
||
* |
* <math>ex = x </math> (resp. <math>xe = x </math>) |
||
* |
* <math>(g_1g_2)x = g_1(g_2x) </math> (resp <math>(xg_1)g_2 </math>) |
||
* [The above implies |
* [The above implies <math>ex = x </math> and <math>gy = x \Rightarrow g^{-1}y=x </math>.] |
||
!! Examples of group actions |
!! Examples of group actions |
||
* |
* <math>G </math> acting on itself by conjugation (a right action). <math>(g,g') \mapsto g^{g'} </math> |
||
* Let |
* Let <math>S(X) </math> be the set of bijections from <math>X </math> to <math>X </math>, with group structure given by composition. We then have an <math>S(X) </math>-action of <math>X </math> given <math>x \mapsto gx : X \rightarrow X \in S(X) </math> |
||
@@color:green ; //[Where does the shirt come into the business?! ]// @@ |
@@color:green ; //[Where does the shirt come into the business?! ]// @@ |
||
* If |
* If <math>G = (\mathcal{G}, \cdot) </math> is a group where <math>\mathcal{S} </math> is the underlying set of <math>G </math> and <math>\cdot </math> is the group multiplication. We have an action: <math>(g,s) = g \cdot s </math> this gives a map <math>G \rightarrow S(\mathcal{G}) </math>. |
||
* |
* <math>SO(n) </math> is the group of orientation preserving symmetries of the <math>(n-1) </math>-dimensional sphere. We have that <math>SO(2) \leq SO(3) </math> as the subgroup of rotations that fix the north and south pole. There is a map <math>SO(3)/SO(2) \rightarrow S^2 </math> given by looking at the image of the north pole. |
||
* If |
* If <math>H \leq G </math> which may not be normal, then we have an action of <math>G </math> on <math>G/H </math> given by <math>g(xH) = (gx)H </math>. |
||
* We have |
* We have <math>S_{n-1} \leq S_n </math> and <math>|S_n / S_{n-1}| = n!/(n-1)! = n </math>. |
||
; Exercise |
; Exercise |
||
: Show that |
: Show that <math>S_n </math> acting on <math>\{1, 2, \dots, n\} </math> and <math>S_n / S_{n-1} </math> are isomorphic <math>S_n </math>-sets. |
||
@@color:green ; //[Dror violently resists rigorously defining a category. Gives a little speech about "things" and "arrows". Gives an example of taking a topological space |
@@color:green ; //[Dror violently resists rigorously defining a category. Gives a little speech about "things" and "arrows". Gives an example of taking a topological space <math>T </math> and then looking at the space of paths with identities given by staying still, and composition of paths given by concatenation.]//@@ |
||
; Claim |
; Claim |
||
: Left |
: Left <math>G </math>-sets form a category. |
||
@@color:green ; //[Dror: I'm being a little bit biased. I prefer the left over the right. Parker: Propaganda? ]//@@ |
@@color:green ; //[Dror: I'm being a little bit biased. I prefer the left over the right. Parker: Propaganda? ]//@@ |
||
The objects of the category are actions |
The objects of the category are actions <math>G \times X \rightarrow X </math>. The morphisms, if we have <math>X </math> and <math>Y </math> are <math>G </math>-sets, a morphism of <math>G </math>-sets is a function <math>\gamma : X \rightarrow Y </math> such that <math>\gamma(gx) = g(\gamma(x)) </math>. |
||
; Isomorphism of |
; Isomorphism of <math>G </math>-sets |
||
: An isomorphism of |
: An isomorphism of <math>G </math>-sets is a morphism which is bijective. |
||
; Silly fact |
; Silly fact |
||
: If |
: If <math>X_1 </math> and <math>X_2 </math> are <math>G </math>-sets then so is <math>X_1 \coprod X_2 </math>, the disjoint union of the two. |
||
the next statement combines the silly observation above, with the construction of an action of |
the next statement combines the silly observation above, with the construction of an action of <math>G </math> on <math>G/H </math>. |
||
; |
; |
||
Claim |
Claim |
||
: Any |
: Any <math>G </math>-set <math>X </math> is a disjoint unions of the ``transitive <math>G </math>-sets''. And If <math>Y </math> is a transitive <math>G </math>-set, then <math>Y \simeq G/H </math> for some <math>H \leq G </math>. |
Revision as of 19:49, 4 October 2011
!! Simplicity of .
- Claim
- is simple for .
For we have that which is simple. For we have that , and once again . For we have that which is of prime order, and hence has no proper subgroups (by Lagrange). It follows that it has no normal proper subgroups.
For we have @@color: red ; Dror's Favourite Homomorphism @@
We proceed with some unmotivated computations, @@color: green ; //[ This proof is not a deep conceptual proof. It is the product of a lot of playing around with cycles, and generators. This is much like a solution to the Rubik's cube, it naturally arises from a lot of playing around -- but is not conceptually deep at all.]// @@
Some computations: </math> </math> (12)(23) = (123) \quad \quad (12)(34) = (123)(234) These are the main ingredients of the proof
- Lemma 1
- is generated by three cycles in . That is, .
We have that each element of is the product of an even number of transpositions@@color:green ; (braid diagrams, computation with polynomials, etc)@@. But we can replace a pair of 2-cycles with one or two 3-cycles by the computation above. It follows that any element of the alternating group can be rewritten as a product of 3-cycles.
- Lemma 2
- If contains a 3-cycle then .
Up to changing notation, we have that . We show that for any . By normality, we have this for . If we can write for . But then and thus </math> </math>(123)^\sigma = \left( (123)^{(12)} \right)^{\sigma'} \in N Since all 3-cycles are conjugate to we have that all 3-cycles are in . It follows by Lemma 1 that .
- //Case I//
- contains a cycle of length .
</math> </math> \sigma= (123456)\sigma' \in N \Rightarrow \sigma^{-1} (123) \sigma (123)^{-1} = (136) \in N
The claim then follows by Lemma 2.
- //Case II//
- If contains an with two cycles of length 3.
</math> </math> \sigma = (123)(456) \sigma' \in N \Rightarrow \sigma^{-1}(124)\sigma(124)^{-1} = (14263) \in N </math> </math>
The claim then follows by //Case I//.
- //Case III//
- If contains
We have that . The claim then follows by Lemma 1.
- //Case IV//
- If every element of is a product of disjoint 2-cycles.
We have that </math> </math>\sigma = (12)(34)\sigma' \Rightarrow \sigma^{-1}(123)\sigma(123)^{-1} = (13)(24) = \tau \in N </math> </math> But then . The claim then follows by Case 1.
@@color:green ; //[Note: This last case is the _only_ place where we really use this mystical fifth element. Without it, this last step wouldn't go through. ]// @@
!! Throwback: contains no normal such that .
</math>S_3 </math> has an element of order three, therefore does. We then conjugate to get all the three cycles. Then is too big.
//[ Suppose that , then
</math> </math> S = \{ e, (123), (132), (124), (142), (134), (143), (234), (243)\} \subset H
Which implies that , but since we have , a contradiction.]//
!!Group Actions.
- A group acting on a set
A left (resp. right) group action of on is a binary map denotes by satisfying:
- (resp. )
- (resp )
- [The above implies and .]
!! Examples of group actions
- acting on itself by conjugation (a right action).
- Let be the set of bijections from to , with group structure given by composition. We then have an -action of given
@@color:green ; //[Where does the shirt come into the business?! ]// @@
- If is a group where is the underlying set of and is the group multiplication. We have an action: this gives a map .
- is the group of orientation preserving symmetries of the -dimensional sphere. We have that as the subgroup of rotations that fix the north and south pole. There is a map given by looking at the image of the north pole.
- If which may not be normal, then we have an action of on given by .
- We have and .
- Exercise
- Show that acting on and are isomorphic -sets.
@@color:green ; //[Dror violently resists rigorously defining a category. Gives a little speech about "things" and "arrows". Gives an example of taking a topological space and then looking at the space of paths with identities given by staying still, and composition of paths given by concatenation.]//@@
- Claim
- Left -sets form a category.
@@color:green ; //[Dror: I'm being a little bit biased. I prefer the left over the right. Parker: Propaganda? ]//@@
The objects of the category are actions . The morphisms, if we have and are -sets, a morphism of -sets is a function such that .
- Isomorphism of -sets
- An isomorphism of -sets is a morphism which is bijective.
- Silly fact
- If and are -sets then so is , the disjoint union of the two.
the next statement combines the silly observation above, with the construction of an action of on .
Claim
- Any -set is a disjoint unions of the ``transitive -sets. And If is a transitive -set, then for some .