09-240/Classnotes for Tuesday December 1: Difference between revisions

From Drorbn
Jump to navigationJump to search
No edit summary
No edit summary
Line 23: Line 23:
* Also, note that exchanging two rows flips the sign.
* Also, note that exchanging two rows flips the sign.


2. <math>det(E^2_{i,c\,\!}A) = det(A) ; |(E^2_{i,j,c\,\!}| = 1</math>
2. <math>det(E^2_{i,c\,\!}A) = det(A) ; |E^2_{i,j,c\,\!}| = 1</math>


* These are "enough"!
* These are "enough"!


3. <math>det((E_{i,j,c\,\!}A) = det(A) ; |(E^3_{i,j,c\,\!}| = 1</math>
3. <math>det((E_{i,j,c\,\!}A) = det(A) ; |E^3_{i,j,c\,\!}| = 1</math>


* Adding a multiple of one row to another does not change the determinant.
* Adding a multiple of one row to another does not change the determinant.
Line 34: Line 34:


<b>Theorem:</b>
<b>Theorem:</b>

If <math> det' : M_{nxn\,\!}</math>→F satisfies properties 0-3 above, then <math>det' = det</math>

<math>det(A) = det'(A)</math>

Philosophical remark: Why not begin our inquiry with the properties above?

We must find an implied need for their use; thus, we must know whether a function <math>det</math> exists first.

Revision as of 16:31, 1 December 2009

Dec 1 lecture notes Pg 1.JPG Dec 1 lecture notes Pg 2.JPG Dec 1 lecture notes Pg 3.JPG Dec 1 lecture notes Pg 4.JPG Dec 1 lecture notes Pg 5.JPG Dec1-1.jpg Dec1-2.jpg Dec1-3.jpg Dec1-4.jpg Dec1-5.jpg Dec1-6.jpg Dec1-7.jpg Dec1-8.jpg

--- Wiki Format ---

MAT240 – December 1st

Basic Properties of det: Mnxn→F: 0 det(I) = 1

1.

  • Also, note that exchanging two rows flips the sign.

2.

  • These are "enough"!

3.

  • Adding a multiple of one row to another does not change the determinant.

The determinant of any matrix can be calculated using the properties above.

Theorem:

If →F satisfies properties 0-3 above, then

Philosophical remark: Why not begin our inquiry with the properties above?

We must find an implied need for their use; thus, we must know whether a function exists first.