Notes for AKT-090917-1/0:23:37: Difference between revisions
From Drorbn
Jump to navigationJump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
Let <math>\mathcal{K}_m = \{ m</math>-singular knots <math>\}</math> |
Let <math>\mathcal{K}_m = \{ m</math>-singular knots <math>\}</math> |
||
⚫ | |||
Given <math>V</math> of type <math>m</math>, We have <math>V^{(m)}: \mathcal{K}_m \rightarrow A</math>. |
|||
⚫ | |||
Let <math>\mathcal{D}_m = \mathcal{K}_m / ( \mbox{over crossing}=\mbox{under crossing})</math>. |
Let <math>\mathcal{D}_m = \mathcal{K}_m / ( \mbox{over crossing}=\mbox{under crossing})</math>. |
||
Hence the '''weight system''' <math> \mathcal{D}_m \rightarrow A</math> given by <math>W_V = V^{(m)}</math> is well-defined. |
Hence the '''weight system''' <math> \mathcal{D}_m \rightarrow A</math> given by <math>W_V = V^{(m)}</math> is well-defined. |
Revision as of 20:00, 18 September 2009
Let -singular knots
Given of type , We have .
Since , does not distinguish over crossing and under crossings in .
Let .
Hence the weight system given by is well-defined.