09-240/Classnotes for Tuesday September 15: Difference between revisions

From Drorbn
Jump to navigationJump to search
(→‎Examples: Addition and multiplication tables.)
(→‎Examples: Expand, fix table format.)
Line 37: Line 37:
# <math>\,\!F_2 = \{ 0, 1 \}</math>
# <math>\,\!F_2 = \{ 0, 1 \}</math>
# <math>\,\!F_7 = \{ 0, 1,2,3,4,5,6 \}</math>
# <math>\,\!F_7 = \{ 0, 1,2,3,4,5,6 \}</math>
# <math>\,\!F_6 = \{ 0, 1,2,3,4,5 \}</math> is not a field (counterexample)
# <math>\,\!F_6 = \{ 0, 1,2,3,4,5 \}</math> is not a field because not every element has a multiplicative inverse.
#: Let <math>a = 2.</math>
#: Then <math>a \cdot 0 = 0, a \cdot 1 = 2, a \cdot 3 = 0, a \cdot 4 = 2, a \cdot 5 = 4</math>
#: Therefore F4 fails; there is '''no''' number ''b'' in ''F''<sub>6</sub> s.t. ''a · b'' = 1


{|
{|
Line 46: Line 49:
! + !! 0 !! 1
! + !! 0 !! 1
|-
|-
! 0 || 0 || 1
! 0
| 0 || 1
|-
|-
! 1 || 1 || 0
! 1
| 1 || 0
|-
|-
|}
|}
Line 58: Line 63:
! × !! 0 !! 1
! × !! 0 !! 1
|-
|-
! 0 || 0 || 0
! 0
| 0 || 0
|-
|-
! 1 || 0 || 1
! 1
| 0 || 1
|}
|}


Line 70: Line 77:
! + !! 0 !! 1 !! 2 !! 3 !! 4 !! 5 !! 6
! + !! 0 !! 1 !! 2 !! 3 !! 4 !! 5 !! 6
|-
|-
! 0
! 0 || 0 || 1 || 2 || 3 || 4 || 5 || 6
| 0 || 1 || 2 || 3 || 4 || 5 || 6
|-
|-
! 1
! 1 || 1 || 2 || 3 || 4 || 5 || 6 || 0
| 1 || 2 || 3 || 4 || 5 || 6 || 0
|-
|-
! 2
! 2 || 2 || 3 || 4 || 5 || 6 || 0 || 1
| 2 || 3 || 4 || 5 || 6 || 0 || 1
|-
|-
! 3
! 3 || 3 || 4 || 5 || 6 || 0 || 1 || 2
| 3 || 4 || 5 || 6 || 0 || 1 || 2
|-
|-
! 4
! 4 || 4 || 5 || 6 || 0 || 1 || 2 || 3
| 4 || 5 || 6 || 0 || 1 || 2 || 3
|-
|-
! 5
! 5 || 5 || 6 || 0 || 1 || 2 || 3 || 4
| 5 || 6 || 0 || 1 || 2 || 3 || 4
|-
|-
! 6
! 6 || 6 || 0 || 1 || 2 || 3 || 4 || 5
| 6 || 0 || 1 || 2 || 3 || 4 || 5
|}
|}


Line 91: Line 105:
! × !! 0 !! 1 !! 2 !! 3 !! 4 !! 5 !! 6
! × !! 0 !! 1 !! 2 !! 3 !! 4 !! 5 !! 6
|-
|-
! 0
! 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0
| 0 || 0 || 0 || 0 || 0 || 0 || 0
|-
|-
! 1
! 1 || 0 || 1 || 2 || 3 || 4 || 5 || 0
| 0 || 1 || 2 || 3 || 4 || 5 || 0
|-
|-
! 2
! 2 || 0 || 2 || 4 || 6 || 1 || 3 || 1
| 0 || 2 || 4 || 6 || 1 || 3 || 1
|-
|-
! 3
! 3 || 0 || 3 || 6 || 2 || 5 || 1 || 2
| 0 || 3 || 6 || 2 || 5 || 1 || 2
|-
|-
! 4
! 4 || 0 || 4 || 1 || 5 || 2 || 6 || 3
| 0 || 4 || 1 || 5 || 2 || 6 || 3
|-
|-
! 5
! 5 || 0 || 5 || 3 || 1 || 6 || 4 || 4
| 0 || 5 || 3 || 1 || 6 || 4 || 4
|-
|-
! 6
! 6 || 0 || 6 || 5 || 4 || 3 || 2 || 5
| 0 || 6 || 5 || 4 || 3 || 2 || 5
|}
|}
|}
|}

Revision as of 22:19, 15 September 2009

The real numbers A set with two binary operators and two special elements s.t.

Note: or means inclusive or in math.

Definition: A field is a set F with two binary operators : F×FF, : F×FF and two elements s.t.

Examples

  1. is not a field because not every element has a multiplicative inverse.
    Let
    Then
    Therefore F4 fails; there is no number b in F6 s.t. a · b = 1
Ex. 4
+ 0 1
0 0 1
1 1 0
Ex. 4
× 0 1
0 0 0
1 0 1
Ex. 5
+ 0 1 2 3 4 5 6
0 0 1 2 3 4 5 6
1 1 2 3 4 5 6 0
2 2 3 4 5 6 0 1
3 3 4 5 6 0 1 2
4 4 5 6 0 1 2 3
5 5 6 0 1 2 3 4
6 6 0 1 2 3 4 5
Ex. 5
× 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 0
2 0 2 4 6 1 3 1
3 0 3 6 2 5 1 2
4 0 4 1 5 2 6 3
5 0 5 3 1 6 4 4
6 0 6 5 4 3 2 5

Theorem: for is a field iff (if and only if) is a prime number

Tedious Theorem

  1. "cancellation property"

...