09-240/Classnotes for Tuesday September 15: Difference between revisions

From Drorbn
Jump to navigationJump to search
(→‎Examples: note for "iff")
(→‎Examples: Addition and multiplication tables.)
Line 38: Line 38:
# <math>\,\!F_7 = \{ 0, 1,2,3,4,5,6 \}</math>
# <math>\,\!F_7 = \{ 0, 1,2,3,4,5,6 \}</math>
# <math>\,\!F_6 = \{ 0, 1,2,3,4,5 \}</math> is not a field (counterexample)
# <math>\,\!F_6 = \{ 0, 1,2,3,4,5 \}</math> is not a field (counterexample)

{|
|
{| border="1" cellspacing="0"
|+ Ex. 4
|-
! + !! 0 !! 1
|-
! 0 || 0 || 1
|-
! 1 || 1 || 0
|-
|}

|
{| border="1" cellspacing="0"
|+ Ex. 4
|-
! × !! 0 !! 1
|-
! 0 || 0 || 0
|-
! 1 || 0 || 1
|}

|-
|
{| border="1" cellspacing="0"
|+ Ex. 5
|-
! + !! 0 !! 1 !! 2 !! 3 !! 4 !! 5 !! 6
|-
! 0 || 0 || 1 || 2 || 3 || 4 || 5 || 6
|-
! 1 || 1 || 2 || 3 || 4 || 5 || 6 || 0
|-
! 2 || 2 || 3 || 4 || 5 || 6 || 0 || 1
|-
! 3 || 3 || 4 || 5 || 6 || 0 || 1 || 2
|-
! 4 || 4 || 5 || 6 || 0 || 1 || 2 || 3
|-
! 5 || 5 || 6 || 0 || 1 || 2 || 3 || 4
|-
! 6 || 6 || 0 || 1 || 2 || 3 || 4 || 5
|}

|
{|border="1" cellspacing="0"
|+ Ex. 5
|-
! × !! 0 !! 1 !! 2 !! 3 !! 4 !! 5 !! 6
|-
! 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0
|-
! 1 || 0 || 1 || 2 || 3 || 4 || 5 || 0
|-
! 2 || 0 || 2 || 4 || 6 || 1 || 3 || 1
|-
! 3 || 0 || 3 || 6 || 2 || 5 || 1 || 2
|-
! 4 || 0 || 4 || 1 || 5 || 2 || 6 || 3
|-
! 5 || 0 || 5 || 3 || 1 || 6 || 4 || 4
|-
! 6 || 0 || 6 || 5 || 4 || 3 || 2 || 5
|}
|}

'''Theorem''': <math>\,\!F_P </math> for <math>p>1</math> is a field ''iff'' <small>([http://en.wikipedia.org/wiki/If_and_only_if if and only if])</small> <math>p</math> is a prime number
'''Theorem''': <math>\,\!F_P </math> for <math>p>1</math> is a field ''iff'' <small>([http://en.wikipedia.org/wiki/If_and_only_if if and only if])</small> <math>p</math> is a prime number



Revision as of 21:52, 15 September 2009

The real numbers A set with two binary operators and two special elements s.t.

Note: or means inclusive or in math.

Definition: A field is a set F with two binary operators : F×FF, : F×FF and two elements s.t.

Examples

  1. is not a field (counterexample)
Ex. 4
+ 0 1
0 0 1
1 1 0
Ex. 4
× 0 1
0 0 0
1 0 1
Ex. 5
+ 0 1 2 3 4 5 6
0 0 1 2 3 4 5 6
1 1 2 3 4 5 6 0
2 2 3 4 5 6 0 1
3 3 4 5 6 0 1 2
4 4 5 6 0 1 2 3
5 5 6 0 1 2 3 4
6 6 0 1 2 3 4 5
Ex. 5
× 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 0
2 0 2 4 6 1 3 1
3 0 3 6 2 5 1 2
4 0 4 1 5 2 6 3
5 0 5 3 1 6 4 4
6 0 6 5 4 3 2 5

Theorem: for is a field iff (if and only if) is a prime number

Tedious Theorem

  1. "cancellation property"

...