07-401/Class Notes for March 7: Difference between revisions
No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
{{07-401/Navigation}} |
{{07-401/Navigation}} |
||
{{In Preparation}} |
|||
==Class Plan== |
==Class Plan== |
||
| Line 20: | Line 19: | ||
'''Definition.''' <math>F(a_1,\ldots,a_n)</math>. |
'''Definition.''' <math>F(a_1,\ldots,a_n)</math>. |
||
'''Theorem.''' If <math>a</math> is a root of an irreducible polynomial <math>p\in F[x]</math>, within some extension field <math>E</math> of <math>F</math>, then <math>F(a)\cong F[ |
'''Theorem.''' If <math>a</math> is a root of an irreducible polynomial <math>p\in F[x]</math>, within some extension field <math>E</math> of <math>F</math>, then <math>F(a)\cong F[x]/\langle p\rangle</math>, and <math>\{1,a,a^2,\ldots,a^{n-1}\}</math> (here <math>n=\deg p</math>) is a basis for <math>F(a)</math> over <math>F</math>. |
||
'''Corollary.''' In this case, <math>F(a)</math> depends only on <math>p</math>. |
'''Corollary.''' In this case, <math>F(a)</math> depends only on <math>p</math>. |
||
| Line 36: | Line 35: | ||
'''Theorem.''' Any two splitting fields for <math>f\in F[x]</math> over <math>F</math> are isomorphic. |
'''Theorem.''' Any two splitting fields for <math>f\in F[x]</math> over <math>F</math> are isomorphic. |
||
'''Lemma 1.''' If <math>p\in F[x]</math> irreducible over <math>F</math>, <math>\phi:F\to F'</math> an isomorphism, <math>a</math> a root of <math>p</math> (in some <math>E/F</math>), <math>a'</math> a root of <math>\phi(p)</math> in some <math>E'/F'</math>, then <math>F |
'''Lemma 1.''' If <math>p\in F[x]</math> irreducible over <math>F</math>, <math>\phi:F\to F'</math> an isomorphism, <math>a</math> a root of <math>p</math> (in some <math>E/F</math>), <math>a'</math> a root of <math>\phi(p)</math> in some <math>E'/F'</math>, then <math>F(a)\cong F'(a')</math>. |
||
'''Lemma 2.''' Isomorphisms can be extended to splitting fields. |
'''Lemma 2.''' Isomorphisms can be extended to splitting fields. |
||
| Line 47: | Line 46: | ||
'''Theorem.''' <math>f\in F[x]</math> has a multiple zero in some extension field of <math>F</math> iff <math>f</math> and <math>f'</math> have a common factor of positive degree. |
'''Theorem.''' <math>f\in F[x]</math> has a multiple zero in some extension field of <math>F</math> iff <math>f</math> and <math>f'</math> have a common factor of positive degree. |
||
'''Lemma.''' The property of "being relatively prime" is preserved under extensions. |
|||
'''Theorem.''' Let <math>f\in F[x]</math> be irreducible. If <math>\operatorname{char}F=0</math>, then <math>f</math> has no multiple zeros in any extension of <math>F</math>. If <math>\operatorname{char}F=p>0</math>, then <math>f</math> has multiple zeros (in some extension) iff it is of the form <math>g(x^p)</math> for some <math>g\in F[x]</math>. |
'''Theorem.''' Let <math>f\in F[x]</math> be irreducible. If <math>\operatorname{char}F=0</math>, then <math>f</math> has no multiple zeros in any extension of <math>F</math>. If <math>\operatorname{char}F=p>0</math>, then <math>f</math> has multiple zeros (in some extension) iff it is of the form <math>g(x^p)</math> for some <math>g\in F[x]</math>. |
||
Revision as of 16:41, 7 March 2007
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Class Plan
Some discussion of the term test and HW6.
Some discussion of our general plan.
Extension Fields
Definition. An extension field [math]\displaystyle{ E }[/math] of [math]\displaystyle{ F }[/math].
Theorem. For every non-constant polynomial [math]\displaystyle{ f }[/math] in [math]\displaystyle{ F[x] }[/math] there is an extension [math]\displaystyle{ E }[/math] of [math]\displaystyle{ F }[/math] in which [math]\displaystyle{ f }[/math] has a zero.
Example [math]\displaystyle{ x^2+1 }[/math] over [math]\displaystyle{ {\mathbb R} }[/math].
Example [math]\displaystyle{ x^5+2x^2+2x+2=(x^2+1)(x^3+2x+2) }[/math] over [math]\displaystyle{ {\mathbb Z}/3 }[/math].
Definition. [math]\displaystyle{ F(a_1,\ldots,a_n) }[/math].
Theorem. If [math]\displaystyle{ a }[/math] is a root of an irreducible polynomial [math]\displaystyle{ p\in F[x] }[/math], within some extension field [math]\displaystyle{ E }[/math] of [math]\displaystyle{ F }[/math], then [math]\displaystyle{ F(a)\cong F[x]/\langle p\rangle }[/math], and [math]\displaystyle{ \{1,a,a^2,\ldots,a^{n-1}\} }[/math] (here [math]\displaystyle{ n=\deg p }[/math]) is a basis for [math]\displaystyle{ F(a) }[/math] over [math]\displaystyle{ F }[/math].
Corollary. In this case, [math]\displaystyle{ F(a) }[/math] depends only on [math]\displaystyle{ p }[/math].
Splitting Fields
Definition. [math]\displaystyle{ f\in F[x] }[/math] splits in [math]\displaystyle{ E/F }[/math], a splitting field for [math]\displaystyle{ f }[/math] over [math]\displaystyle{ F }[/math].
Theorem. A splitting field always exists.
Example. [math]\displaystyle{ x^4-x^2-2=(x^2-2)(x^2+1) }[/math] over [math]\displaystyle{ {\mathbb Q} }[/math].
Example. Factor [math]\displaystyle{ x^2+x+2\in{\mathbb Z}_3[x] }[/math] within its splitting field [math]\displaystyle{ {\mathbb Z}_3[x]/\langle x^2+x+2\rangle }[/math].
Theorem. Any two splitting fields for [math]\displaystyle{ f\in F[x] }[/math] over [math]\displaystyle{ F }[/math] are isomorphic.
Lemma 1. If [math]\displaystyle{ p\in F[x] }[/math] irreducible over [math]\displaystyle{ F }[/math], [math]\displaystyle{ \phi:F\to F' }[/math] an isomorphism, [math]\displaystyle{ a }[/math] a root of [math]\displaystyle{ p }[/math] (in some [math]\displaystyle{ E/F }[/math]), [math]\displaystyle{ a' }[/math] a root of [math]\displaystyle{ \phi(p) }[/math] in some [math]\displaystyle{ E'/F' }[/math], then [math]\displaystyle{ F(a)\cong F'(a') }[/math].
Lemma 2. Isomorphisms can be extended to splitting fields.
Zeros of Irreducible Polynomials
Definition. The derivative of a polynomial.
Claim. The derivative operation is linear and satisfies Leibnitz's law.
Theorem. [math]\displaystyle{ f\in F[x] }[/math] has a multiple zero in some extension field of [math]\displaystyle{ F }[/math] iff [math]\displaystyle{ f }[/math] and [math]\displaystyle{ f' }[/math] have a common factor of positive degree.
Lemma. The property of "being relatively prime" is preserved under extensions.
Theorem. Let [math]\displaystyle{ f\in F[x] }[/math] be irreducible. If [math]\displaystyle{ \operatorname{char}F=0 }[/math], then [math]\displaystyle{ f }[/math] has no multiple zeros in any extension of [math]\displaystyle{ F }[/math]. If [math]\displaystyle{ \operatorname{char}F=p\gt 0 }[/math], then [math]\displaystyle{ f }[/math] has multiple zeros (in some extension) iff it is of the form [math]\displaystyle{ g(x^p) }[/math] for some [math]\displaystyle{ g\in F[x] }[/math].
Definition. A perfect field.
Theorem. A finite field is perfect.
Theorem. An irreducible polynomial over a perfect field has no multiple zeros (in any extension).
Theorem. Let [math]\displaystyle{ f\in F[x] }[/math] be irreducible and let [math]\displaystyle{ E }[/math] be the splitting field of [math]\displaystyle{ f }[/math] over [math]\displaystyle{ F }[/math]. Then in [math]\displaystyle{ E }[/math] all zeros of [math]\displaystyle{ f }[/math] have the same multiplicity.
Corollary. [math]\displaystyle{ f }[/math] as above must have the form [math]\displaystyle{ a(x-a_1)^n\cdots(x-a_k)^n }[/math] for some [math]\displaystyle{ a\in F }[/math] and [math]\displaystyle{ a_1,\ldots,a_k\in E }[/math].
Example. [math]\displaystyle{ x^2-t\in{\mathbb Z}_2(t)[x] }[/math] is irreducible and has a single zero of multiplicity 2 within its splitting field over [math]\displaystyle{ {\mathbb Z}_2(t)[x] }[/math].