07-401/Class Notes for March 7: Difference between revisions
No edit summary |
|||
| Line 39: | Line 39: | ||
===Zeros of Irreducible Polynomials=== |
===Zeros of Irreducible Polynomials=== |
||
'''Definition.''' The derivative of a polynomial. |
|||
'''Claim.''' The derivative operation is linear and satisfies Leibnitz's law. |
|||
'''Theorem.''' <math>f\in F[x]</math> has a multiple zero in some extension field of <math>F</math> iff <math>f</math> and <math>f'</math> have a common factor of positive degree. |
|||
===Perfect Fields=== |
===Perfect Fields=== |
||
Revision as of 15:27, 7 March 2007
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The information below is preliminary and cannot be trusted! (v)
Class Plan
Some discussion of the term test and HW6.
Extension Fields
Definition. An extension field [math]\displaystyle{ E }[/math] of [math]\displaystyle{ F }[/math].
Theorem. For every non-constant polynomial [math]\displaystyle{ f }[/math] in [math]\displaystyle{ F[x] }[/math] there is an extension [math]\displaystyle{ E }[/math] of [math]\displaystyle{ F }[/math] in which [math]\displaystyle{ f }[/math] has a zero.
Example [math]\displaystyle{ x^2+1 }[/math] over [math]\displaystyle{ {\mathbb R} }[/math].
Example [math]\displaystyle{ x^5+2x^2+2x+2=(x^2+1)(x^3+2x+2) }[/math] over [math]\displaystyle{ {\mathbb Z}/3 }[/math].
Definition. [math]\displaystyle{ F(a_1,\ldots,a_n) }[/math].
Theorem. If [math]\displaystyle{ a }[/math] is a root of an irreducible polynomial [math]\displaystyle{ p\in F[x] }[/math], within some extension field [math]\displaystyle{ E }[/math] of [math]\displaystyle{ F }[/math], then [math]\displaystyle{ F(a)\cong F[a]/\langle p\rangle }[/math], and [math]\displaystyle{ \{1,a,a^2,\ldots,a^{n-1}\} }[/math] (here [math]\displaystyle{ n=\deg p }[/math]) is a basis for [math]\displaystyle{ F(a) }[/math] over [math]\displaystyle{ F }[/math].
Corollary. In this case, [math]\displaystyle{ F(a) }[/math] depends only on [math]\displaystyle{ p }[/math].
Splitting Fields
Definition. [math]\displaystyle{ f\in F[x] }[/math] splits in [math]\displaystyle{ E/F }[/math], a splitting field for [math]\displaystyle{ f }[/math] over [math]\displaystyle{ F }[/math].
Theorem. A splitting field always exists.
Example. [math]\displaystyle{ x^4-x^2-2=(x^2-2)(x^2+1) }[/math] over [math]\displaystyle{ {\mathbb Q} }[/math].
Example. Factor [math]\displaystyle{ x^2+x+2\in{\mathbb Z}_3[x] }[/math] within its splitting field [math]\displaystyle{ {\mathbb Z}_3[x]/\langle x^2+x+2\rangle }[/math].
Theorem. Any two splitting fields for [math]\displaystyle{ f\in F[x] }[/math] over [math]\displaystyle{ F }[/math] are isomorphic.
Lemma 1. If [math]\displaystyle{ p\in F[x] }[/math] irreducible over [math]\displaystyle{ F }[/math], [math]\displaystyle{ \phi:F\to F' }[/math] an isomorphism, [math]\displaystyle{ a }[/math] a root of [math]\displaystyle{ p }[/math] (in some [math]\displaystyle{ E/F }[/math]), [math]\displaystyle{ a' }[/math] a root of [math]\displaystyle{ \phi(p) }[/math] in some [math]\displaystyle{ E'/F' }[/math], then [math]\displaystyle{ F[a]\cong F'[a'] }[/math].
Lemma 2. Isomorphisms can be extended to splitting fields.
Zeros of Irreducible Polynomials
Definition. The derivative of a polynomial.
Claim. The derivative operation is linear and satisfies Leibnitz's law.
Theorem. [math]\displaystyle{ f\in F[x] }[/math] has a multiple zero in some extension field of [math]\displaystyle{ F }[/math] iff [math]\displaystyle{ f }[/math] and [math]\displaystyle{ f' }[/math] have a common factor of positive degree.