User:Drorbn/06-1350-HW4: Difference between revisions
From Drorbn
Jump to navigationJump to search
No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
===The Generators=== |
===The Generators=== |
||
Our generators are <math>T</math>, <math>R</math>, <math> |
Our generators are <math>T</math>, <math>R</math>, <math>\Phi</math> and <math>B^{\pm}</math>: |
||
{| align=center |
{| align=center cellpadding=10 style="border: solid orange 1px" |
||
|- align=center valign=middle |
|- align=center valign=middle |
||
|align=left|Picture |
|align=left|Picture |
||
| ⚫ | |||
| |
| |
||
| |
| |
||
| Line 15: | Line 14: | ||
|<math>T</math> |
|<math>T</math> |
||
|<math>R</math> |
|<math>R</math> |
||
|<math> |
|<math>\Phi</math> |
||
|<math>Y^{dn}</math> |
|||
|<math>B^+</math> |
|<math>B^+</math> |
||
|<math>B^-</math> |
|<math>B^-</math> |
||
| Line 23: | Line 21: | ||
|<math>t</math> |
|<math>t</math> |
||
|<math>r</math> |
|<math>r</math> |
||
|<math> |
|<math>\varphi</math> |
||
|<math>y^d</math> |
|||
|<math>b^+</math> |
|<math>b^+</math> |
||
|<math>b^-</math> |
|<math>b^-</math> |
||
| Line 36: | Line 33: | ||
In formulas, this is |
In formulas, this is |
||
<center><math>(1230)^\star B^+ (1213)^\star B^+ (1023)^\star B^+ = (1123)^\star B^+ (1203)^\star B^+ (1231)^\star B^+</math>.</center> |
<center><math>(1230)^\star B^+ (1213)^\star B^+ (1023)^\star B^+ = (1123)^\star B^+ (1203)^\star B^+ (1231)^\star B^+</math>.</center> |
||
Linearized and written in functional form, this becomes |
|||
Thus the R3 component of <math>d</math> is |
|||
{| align=center |
|||
<center><math>(1230)^\star b^+ +(1213)^\star b^+ +(1023)^\star b^+ -(1123)^\star b^+ -(1203)^\star b^+ -(1231)^\star b^+</math>.</center> |
|||
|- |
|||
|<math>\rho_3(x_1, x_2, x_3, x_4) = </math> |
|||
|<math>b^+(x_1,x_2,x_3) + b^+(x_1+x_3,x_2,x_4) + b^+(x_1,x_3,x_4)</math> |
|||
|- |
|||
| ⚫ | |||
|<math>- b^+(x_1+x_2,x_3,x_4) - b^+(x_1,x_2,x_4) - b^+(x_1+x_4,x_2,x_3).</math> |
|||
|} |
|||
===The Syzygies=== |
===The Syzygies=== |
||
Revision as of 17:38, 18 November 2006
The Generators
Our generators are [math]\displaystyle{ T }[/math], [math]\displaystyle{ R }[/math], [math]\displaystyle{ \Phi }[/math] and [math]\displaystyle{ B^{\pm} }[/math]:
The Relations
The Reidemeister Move R3
The picture is
In formulas, this is
Linearized and written in functional form, this becomes
| [math]\displaystyle{ \rho_3(x_1, x_2, x_3, x_4) = }[/math] | [math]\displaystyle{ b^+(x_1,x_2,x_3) + b^+(x_1+x_3,x_2,x_4) + b^+(x_1,x_3,x_4) }[/math] |
| [math]\displaystyle{ - b^+(x_1+x_2,x_3,x_4) - b^+(x_1,x_2,x_4) - b^+(x_1+x_4,x_2,x_3). }[/math] |