CMS Winter 2006 Session on Knot Homologies: Difference between revisions
Line 17: | Line 17: | ||
7. Scott Morrison (Berkeley) - accepted. |
7. Scott Morrison (Berkeley) - accepted. |
||
{{CMS 2006 Speaker|n=8|name=Gad Naot|notes=Toronto|t=half|title=The Universal Khovanov Link Homology Theory - Extracting Algebraic Information|abstract=In this talk I will introduce the universal Khovanov link homology theory (<math>n=2</math>). This theory is developed using the full strength of the geometric formalism of Khovanov link homology theory and has many computational and theoretical advantages. The universal theory answers questions regarding the amount of algebraic information held within the complex associated to a link. It also answers questions regarding the extraction of this information by giving full control over the various TQFTs applied to the complex (along with control over other gadgets such as the various spectral sequences related to these TQFTs). After a brief overview and some reminders I will introduce the major tools and ideas used in developing the universal theory (such as surface classification, genus generating operators, complex isomorphisms and "promotions"). Then, I will present some of the advantages of such a theory, time permitting (more on the topic can be found at arXiv:math.GT/0603347).}} |
|||
8. Gad Naot (Toronto) - half hour, accepted. |
|||
9. Juan Ariel Ortiz-Navarro (Iowa) - half hour, accepted, maybe just Sat-Sun. |
9. Juan Ariel Ortiz-Navarro (Iowa) - half hour, accepted, maybe just Sat-Sun. |
||
Line 23: | Line 23: | ||
10. Jake Rasmussen (Princeton) - 1 hour, accepted. |
10. Jake Rasmussen (Princeton) - 1 hour, accepted. |
||
⚫ | {{CMS 2006 Speaker|n=11|name=Lev Rozansky|notes=UNC|t=one|title=Virtual knots, convolutions and a categorification of the <math>SO(2N)</math> Kauffman polynomial|abstract=This is a joint work with M. Khovanov. We present a categorification construction for the <math>SO(2N)</math> specialization of the Kauffman polynomial and prove its invariance under the first and second Reidemeister moves. The construction follows the Kauffman-Vogel alternating sign formula, which expresses the Kauffman polynomial of a link in terms of polynomials of 4-valent planar graphs. We define the matrix factorization associated to the 4-vertex as a convolution of a chain of two saddle morphisms, relating parallel and virtually crossing pairs of arcs.}} |
||
<div class="NavFrame"><div class="NavHead">11. Lev Rozansky (UNC) - 1 hour on ''Virtual knots, convolutions and a categorification of the <math>SO(2N)</math> Kauffman polynomial''. '''Abstract:''' </div> |
|||
<div class="NavContent"> |
|||
⚫ | |||
</div></div> |
|||
12. Paul Seidel (Chicago) - 1 hour, accepted, maybe just Sat-Sun. |
12. Paul Seidel (Chicago) - 1 hour, accepted, maybe just Sat-Sun. |
Revision as of 12:41, 1 November 2006
This is an information page for the session on Knot Homologies in the Canadian Mathematical Society Winter 2006 Meeting in Toronto.
Our Speakers
1. Carmen Caprau (Iowa) - half hour, accepted, maybe just Sat-Sun.
2. Olivier Collin (UQAM) - 1 hour, accepted.
3. Joel Kamnitzer (MIT) - 1-hour, accepted.
4. Mikhail Khovanov (Columbia) - 1 hour, will try to make it.
5. Peter Lee (Toronto) - half hour, accepted.
6. Robert Lipshitz (Columbia) - 1 hour, accepted.
7. Scott Morrison (Berkeley) - accepted.
- In this talk I will introduce the universal Khovanov link homology theory (). This theory is developed using the full strength of the geometric formalism of Khovanov link homology theory and has many computational and theoretical advantages. The universal theory answers questions regarding the amount of algebraic information held within the complex associated to a link. It also answers questions regarding the extraction of this information by giving full control over the various TQFTs applied to the complex (along with control over other gadgets such as the various spectral sequences related to these TQFTs). After a brief overview and some reminders I will introduce the major tools and ideas used in developing the universal theory (such as surface classification, genus generating operators, complex isomorphisms and "promotions"). Then, I will present some of the advantages of such a theory, time permitting (more on the topic can be found at arXiv:math.GT/0603347).
9. Juan Ariel Ortiz-Navarro (Iowa) - half hour, accepted, maybe just Sat-Sun.
10. Jake Rasmussen (Princeton) - 1 hour, accepted.
- This is a joint work with M. Khovanov. We present a categorification construction for the specialization of the Kauffman polynomial and prove its invariance under the first and second Reidemeister moves. The construction follows the Kauffman-Vogel alternating sign formula, which expresses the Kauffman polynomial of a link in terms of polynomials of 4-valent planar graphs. We define the matrix factorization associated to the 4-vertex as a convolution of a chain of two saddle morphisms, relating parallel and virtually crossing pairs of arcs.
12. Paul Seidel (Chicago) - 1 hour, accepted, maybe just Sat-Sun.
13. Adam Sikora (Buffalo) - 1 hour, accepted.
14. Robb Todd (Iowa) - half hour, accepted, maybe just Sat-Sun.
Our Schedule
We have a total of 3 half hour speaking slots and 11 one hour speaking slots (that can be subdivided). Two of the 1-hour slots begin at 8:30AM. All other slots are later than 9:30AM. Our internal schedule will be determined over the next few days.
Saturday December 9, 2006
09:00-09:50 | Plenary Lecture: Karen Smith |
10:15-12:15 | Our Session |
13:45-14:35 | Prize Lecture: Andrew Granville |
16:00-18:00 | Our Session |
18:00-18:30 | Adrien-Pouliot Lecture |
18:30-19:30 | Participant's Social |
19:30-20:30 | Public Lecture: V. Kumar Murty |
Sunday December 10, 2006
08:30-10:00 | Our Session |
10:15-11:15 | Our Session |
11:15-12:05 | Plenary Lecture: Susan Tolman |
13:45-14:35 | Doctoral Prize Lecture |
14:45-15:35 | Plenary Lecture: Dimitri Shlakhtenko |
16:00-17:30 | Our Session |
18:00-19:00 | Reception |
19:00-22:00 | Banquet |
Monday December 11, 2006
08:30-10:00 | Our Session |
10:15-11:15 | Our Session |
11:15-12:05 | Plenary Lecture: Dmitry Dolgopyat |
13:45-14:35 | Plenary Lecture: Shmuel Weinberger |
14:45-15:45 | Our Session |
16:00-18:00 | Our Session |
Letters to the Speakers
4th Letter
Dear Speakers, A few reminders regarding the upcoming "Knot Homologies" session in Toronto - 1. You need to buy tickets and arrange accommodations! See my "2nd Letter" at http://katlas.math.toronto.edu/drorbn/index.php?title=CMS and also the "Accommodations Note" there. 2. The deadline for reduced-rate registration is November 5. Please register and keep the receipt, though remember that our budget is tiny so it won't cover much more than the registration... 3. If you'll need any special equipment for your talk, my deadline to request it is Friday November 3rd, so please tell me about it soon. In our lecture room we will have an overhead projector, a screen and a white board. Computer projectors must be booked now. 4. MOST IMPORTANT: If you haven't submitted your title and abstract yet, please do so ASAP, and also send a copy directly to me. I need to prepare the schedule for our session by next Friday (Nov 3), and my plan is to do it next Wednesday. It will be better if I'll know what you are planning to talk about! This applies to Caprau, Collin, Lee, Morrison, Naot, Ortiz-Navarro, Rasmussen, Rozansky and Todd. Your Obedient Servant, Dror.
Accommodations Note
If you're still looking for accommodations, I would definitely take a look at http://www.baldwininn.com/. A new place so no feedback yet, but the location is fantastic.
3rd Letter
Shalom Speakers and Potential Speakers, A quick reminder - the powers above me request that you submit your abstract by October 15 (i.e., in about two days) at http://www.cms.math.ca/Events/winter06/announce.e#abs_sub. The punishment for not doing so will be that your abstract may not appear in the official program. This of course will not prevent it from appearing on our "internal" wiki site. Also, visit our internal site at http://katlas.math.toronto.edu/drorbn/index.php?title=CMS for the most up-to-date list of speakers. Lehitraot, Dror.
2nd Letter
Dear Speakers and Potential Speakers, A few more words about the CMS Winter 2006 Session on Knot Homologies in Toronto on December 9-11 - As I wrote on the initial invitation, we only have a tiny budget to run this session - about $3,000 to divide between around 10 speakers. This means very little for each one of you, I'm afraid. If this scares you out, say so now and don't hold a grudge against me later! On the other hand, I think we have an excellent group of speakers (see http://katlas.math.toronto.edu/drorbn/index.php?title=CMS), so the meeting itself should be FUN. Now for the technicalities - 1. The powers above me request that you submit your abstract by October 15 (i.e., in about two weeks) at http://www.cms.math.ca/Events/winter06/announce.e#abs_sub. The punishment for not doing so will be that your abstract may not appear in the official program. This of course will not prevent it from appearing on our "internal" wiki site. 2. You are requested to register at http://www.cms.math.ca/Events/winter06/announce.e#registration by November 5. Please do so and pay the registration fees as on the web, and note that I after I refund those I'll have a lot less money to play with. 3. Find yourself a hotel room as on http://www.cms.math.ca/Events/winter06/announce.e#accommodation and book it by November 15. If you need my help with choices or with further choices, you know how to reach me. There are also much cheaper and lower-grade places available. Scott Morrison stayed in one of those three times and seemed happy and undamaged. His place is at http://www.affordacom.com/home.htm; it is within the lovely Kensington Market neighborhood, within 5 minutes walk from my house and from the math department and the Fields Institute, and within 20 minutes walk from the conference site. 4. Book your flights and let me know their dates/times. No deadline. Best, Dror.
1st Letter
Shalom ***, I'd like to invite you to give a one hour talk in the topology/knot theory session of the Winter Meeting of the Canadian Mathematical Society, to be held in Toronto on December 9-11, 2006. Note that despite the wide title of our session, I plan to make it quite focused, with most talks on or around knot homologies and with a relatively small (10-12) number of speakers. So you should think of the meeting more as a "workshop" than as a "session in an AMS conference". Though to cut costs, I'm presently inviting only people from the northeast, which is generalized to also include Chicago, North Carolina and eastern Canada. We will have around $3,000 overall to support the speakers. This is not enough to pay for all expenses, but you can assume that at least some of your expenses will be covered. Toronto's the second nicest city in the world and I'm sure you'll enjoy the meeting! Lehitraot, Dror.
0th Letter
Shalom Friends, This is not an invitation nor an announcement, just a call for your opinion. I was asked to organize a session in the Canadian Mathematical Society (CMS) meeting in Toronto, Dec 9-11 2006. I didn't accept or decline yet, but I will do so in 2-3 days and I'd like to get your opinions before deciding. My idea is to "hijack" the session and to organize it as a mini-workshop similar in style and content to the workshop Olivier Collin organized a few months ago in Montreal (thus the people receiving this message are the east-coast speakers from Montreal, and forgive me if I forgot anyone). More details: We'll have time for 8-9 one hour talks; a part of that (maybe 2 hours) will have to go to other parts of topology. We'll be able to split some of those to two half-hour talks (in fact, this seems to be the standard in CMS meetings, but I'd like to have as many longer talks as possible). I/we will have $2,500 from the CMS plus a small amount from my grant. So we will have to restrict to people from the east coast and even they may not get full support. So what do you think? Should I bother? Would you come? At this time neither this letter nor your response to it will be binding in any way. Lehitraot, Dror.