06-240/Classnotes For Thursday, September 21: Difference between revisions

From Drorbn
Jump to navigationJump to search
(Some updates)
m (Fix up LaTeX)
Line 11: Line 11:
#<math> x+0=x \ </math>
#<math> x+0=x \ </math>
#<math> \forall x\; \exists\ y \ s.t.\ x+y=0 \ </math>
#<math> \forall x\; \exists\ y \ s.t.\ x+y=0 \ </math>
#<math> 1.x=x \ </math>
#<math> 1\cdot x=x \ </math>
#<math> a(bx)=(ab)x \ </math>
#<math> a(bx)=(ab)x \ </math>
#<math> a(x+y)=ax+ay \ </math>
#<math> a(x+y)=ax+ay \ </math>
Line 22: Line 22:
#<math> \forall x,y \in V\ x+(y+z)=(x+y)+z </math>
#<math> \forall x,y \in V\ x+(y+z)=(x+y)+z </math>
#<math> \exists\ 0 \in V s.t.\; \forall x \in V\ x+0=x </math>
#<math> \exists\ 0 \in V s.t.\; \forall x \in V\ x+0=x </math>
#<math> \forall x \in V\; \exists\ y \in V\ s.t.\ x+y=0</math>
#<math> \forall x \in V\; \exists\ y \in V\ s.t. \ x+y=0</math>
#<math> 1.x=x\ </math>
#<math> 1\cdot x=x\ </math>
#<math> a(bx)=(ab)x\ </math>
#<math> a(bx)=(ab)x\ </math>
#<math> a(x+y)=ax+ay\ </math>
#<math> a(x+y)=ax+ay\ </math>
#<math> \forall x \in V\ ,\forall a,b \in F\ (a+b)x=ax+bx </math>
#<math> \forall x \in V\ ,\forall a,b \in F\ (a+b)x=ax+bx </math>
-----
-----
9. <math> x \mapsto |x| \in \mathbb{R} \ \ |x+y| \le |x|+|y| </math>
9. <math> x \mapsto \vert x\vert \in \mathbb{R} \ \vert x+y\vert \le \vert x\vert+\vert y\vert </math>
====''Examples''====
====''Examples''====
'''Ex.1.'''
'''Ex.1.'''
<math> F^n= \lbrace(a_1,a_2,a_3,...,a_{n-1},a_n):\forall i\ a_i \in F \rbrace </math> <br/>
<math> F^n= \lbrace(a_1,a_2,a_3,\ldots,a_{n-1},a_n):\forall i\ a_i \in F \rbrace </math> <br/>
<math> n \in \mathbb{Z}\ , n \ge 0 </math> <br/>
<math> n \in \mathbb{Z}\ , n \ge 0 </math> <br/>
<math> x=(a_1,...,a_2)\ y=(b_1,...,b_2)\ </math> <br/>
<math> x=(a_1,\ldots,a_2)\ y=(b_1,\ldots, b_2)\ </math> <br/>
<math> x+y:=(a_1+b_1,a_2+b_2,...,a_n+b_n)\ </math> <br/>
<math> x+y:=(a_1+b_1,a_2+b_2,\ldots,a_n+b_n)\ </math> <br/>
<math> 0_{F^n}=(0,...,0) </math> <br/>
<math> 0_{F^n}=(0,\ldots,0) </math> <br/>
<math> a\in F\ ax=(aa_1,aa_2,...,aa_n) </math> <br/>
<math> a\in F\ ax=(aa_1,aa_2,\ldots,aa_n) </math> <br/>
<math> In \ \mathbb{Q}^3 \ ( \frac{3}{2},-2,7)+( \frac{-3}{2}, \frac{1}{3},240)=(0, \frac{-5}{3},247) </math> <br/>
<math> In \ \mathbb{Q}^3 \ \left( \frac{3}{2},-2,7\right)+\left( \frac{-3}{2}, \frac{1}{3},240\right)=\left(0, \frac{-5}{3},247\right) </math> <br/>
<math> 7\left( \frac{1}{5},\frac{1}{7},\frac{1}{9}\right)=\left( \frac{7}{5},1,\frac{7}{9}\right) </math> <br/>
<math> 7\left( \frac{1}{5},\frac{1}{7},\frac{1}{9}\right)=\left( \frac{7}{5},1,\frac{7}{9}\right) </math> <br/>
'''Ex.2.'''
'''Ex.2.'''
<math> V=M_{m\times n}(F)=\lbrace\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots &
<math> V=M_{m\times n}(F)=\left\lbrace\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots &
& \vdots \\ a_{m1} & \cdots & a_{mn}\end{pmatrix}: a_{ij} \in F \rbrace </math> <br/>
& \vdots \\ a_{m1} & \cdots & a_{mn}\end{pmatrix}: a_{ij} \in F \right\rbrace </math> <br/>
<math> M_{3\times 2}( \mathbb{R})\ni \begin{pmatrix} 7 & -7 \\ \pi & \mathit{e} \\ -5 & 2 \end{pmatrix} </math> <br/>
<math> M_{3\times 2}( \mathbb{R})\ni \begin{pmatrix} 7 & -7 \\ \pi & \mathit{e} \\ -5 & 2 \end{pmatrix} </math> <br/>
Addition by adding entry by entry:
Addition by adding entry by entry:

Revision as of 04:55, 27 September 2006

A force has a direction & a magnitude.

Force Vectors

  1. There is a special force vector called 0.
  2. They can be added.
  3. They can be multiplied by any scalar.

====Properties==== (convention: x,y,z-vectors; a,b,c-scalars)

=====Definition===== Let F be a field "of scalars". A vector space over F is a set V (of "vectors") along with two operations:

, so that

9.

Examples

Ex.1.







Ex.2.

Addition by adding entry by entry:


Multiplication by multiplying scalar c to all entries by M.



Zero matrix has all entries = 0:


Ex.3. form a vector space over .
Ex.4. F is a vector space over itself.
Ex.5. is a vector space over .
Ex.6. Let S be a set. Let