Notes for AKT-140228/0:41:45: Difference between revisions

From Drorbn
Jump to navigationJump to search
No edit summary
No edit summary
 
Line 1: Line 1:
'''<math>(A^g)^h = A^{(gh)}</math> ?'''
'''Showing ''''''<math>(A^g)^h = A^{(gh)}</math> '''





Latest revision as of 17:02, 26 July 2018

'Showing '[math]\displaystyle{ (A^g)^h = A^{(gh)} }[/math]


[math]\displaystyle{ \begin{align} A^{(gh)} &= (gh)^{-1}A(gh) + (gh)^{-1}\mathrm{d}(gh) \\ &= (gh)^{-1}A(gh) + (gh)^{-1}\Big((\mathrm{d}g)h + g(\mathrm{d}h)\Big)\\ &= (gh)^{-1}A(gh) + (gh)^{-1}(\mathrm{d}g)h + (gh)^{-1}g(\mathrm{d}h)\\ &= h^{-1}(g^{-1}Ag)h + h^{-1}(g^{-1}\mathrm{d}g)h + h^{-1}\mathrm{d}h\\ &= h^{-1}\Big(g^{-1}Ag + g^{-1}\mathrm{d}g\Big)h + h^{-1}\mathrm{d}h\\ &= (A^g)^h. \end{align} }[/math]

The equality shows that the action is a group action.