Notes for AKT-140307/0:41:01: Difference between revisions

From Drorbn
Jump to navigationJump to search
No edit summary
mNo edit summary
Line 2: Line 2:
$$CS(A^g)=\int_\mathbb{R^3} Tr(A^g \wedge d A^g + \frac23 A^g \wedge A^g \wedge A^g)$$
$$CS(A^g)=\int_\mathbb{R^3} Tr(A^g \wedge d A^g + \frac23 A^g \wedge A^g \wedge A^g)$$
$$Tr(A^g \wedge d A^g + \frac23 A^g \wedge A^g \wedge A^g) =$$
$$Tr(A^g \wedge d A^g + \frac23 A^g \wedge A^g \wedge A^g) =$$
$$Tr(g^{-1} A \wedge d A g + g^{-1} A g \wedge d g^{-1} \wedge g^{-1} A g + g^{-1} d g \wedge g^{-1} d A g - g^{-1} d g \wedge g^{-1} A \wedge d g +$$
$$Tr(g^{-1} A \wedge (d A) g + g^{-1} A g \wedge d g^{-1} \wedge g^{-1} A g + g^{-1} d g \wedge g^{-1} (d A) g - g^{-1} d g \wedge g^{-1} A \wedge d g +$$
$$g^{-1} d g \wedge d g^{-1} \wedge A g - g^{-1} A \wedge A \wedge d g + g^{-1} A g \wedge d g^{-1} \wedge d g + g^{-1} d g \wedge d g^{-1} \wedge d g) +$$
$$g^{-1} d g \wedge d g^{-1} \wedge A g - g^{-1} A \wedge A \wedge d g + g^{-1} A g \wedge d g^{-1} \wedge d g + g^{-1} d g \wedge d g^{-1} \wedge d g) +$$
$$\frac23 Tr( g^{-1} A \wedge A \wedge A g + g^{-1} A \wedge A \wedge d g + g^{-1} A g \wedge g^{-1} d g \wedge g^{-1} A g + g^{-1} A g \wedge g^{-1} d g \wedge g^{-1} d g +$$
$$\frac23 Tr( g^{-1} A \wedge A \wedge A g + g^{-1} A \wedge A \wedge d g + g^{-1} A g \wedge g^{-1} d g \wedge g^{-1} A g + g^{-1} A g \wedge g^{-1} d g \wedge g^{-1} d g +$$
$$g^{-1} d g \wedge g^{-1} A \wedge A g + g^{-1} d g \wedge g^{-1} A g \wedge g^{-1} d g + g^{-1} A g \wedge g^{-1} d g \wedge g^{-1} A g + g^{-1} d g \wedge g^{-1} d g \wedge g^{-1} d g) $$
$$g^{-1} d g \wedge g^{-1} A \wedge A g + g^{-1} d g \wedge g^{-1} A g \wedge g^{-1} d g + g^{-1} A g \wedge g^{-1} d g \wedge g^{-1} A g + g^{-1} d g \wedge g^{-1} d g \wedge g^{-1} d g) $$


Now $0 = d g^{-1} g = d g g^{-1} + g d g^{-1}$
Now $0 = d (g^{-1} g) = (d g) g^{-1} + g d g^{-1}$


So $d g g^{-1} = - g d g^{-1}$
So $(dg) g^{-1} = - g d g^{-1}$


Applying this to the fifth and seventh terms of the equation above yields
Applying this to the fifth and seventh terms of the equation above yields
Line 18: Line 18:
Combining this with the fact that the trace is invariant under cyclic permutations show that the
Combining this with the fact that the trace is invariant under cyclic permutations show that the


$$Tr(g^{-1} A \wedge d A g - 2 g^{-1} A \wedge A \wedge d g - 2 g^{-1} A g \wedge g^{-1} d g \wedge g^{-1} d g +g^{-1} d g \wedge g^{-1} d A g - g^{-1} d g \wedge g^{-1} A \wedge d g + g^{-1} d g \wedge d g^{-1} \wedge d g) +$$
$$Tr(g^{-1} A \wedge (d A) g - 2 g^{-1} A \wedge A \wedge d g - 2 g^{-1} A g \wedge g^{-1} d g \wedge g^{-1} d g +g^{-1} d g \wedge g^{-1} d A g - g^{-1} d g \wedge g^{-1} A \wedge d g + g^{-1} d g \wedge d g^{-1} \wedge d g) +$$
$$ \frac23 Tr( g^{-1} A \wedge A \wedge A g + 3 g^{-1} A \wedge A \wedge d g + 3 g^{-1} A g \wedge g^{-1} d g \wedge g^{-1} d g +g^{-1} d g \wedge g^{-1} d g \wedge g^{-1} d g) =$$
$$ \frac23 Tr( g^{-1} A \wedge A \wedge A g + 3 g^{-1} A \wedge A \wedge d g + 3 g^{-1} A g \wedge g^{-1} d g \wedge g^{-1} d g +g^{-1} d g \wedge g^{-1} d g \wedge g^{-1} d g) =$$
$$Tr(g^{-1} A \wedge d A g + g^{-1} d g \wedge g^{-1} d A g - g^{-1} d g \wedge g^{-1} A \wedge d g+ g^{-1} d g \wedge d g^{-1} \wedge d g) + \frac23 Tr( g^{-1} A \wedge A \wedge A g + g^{-1} d g \wedge g^{-1} d g \wedge g^{-1} d g)$$
$$Tr(g^{-1} A \wedge d A g + g^{-1} d g \wedge g^{-1} d A g - g^{-1} d g \wedge g^{-1} A \wedge d g+ g^{-1} d g \wedge d g^{-1} \wedge d g) + \frac23 Tr( g^{-1} A \wedge A \wedge A g + g^{-1} d g \wedge g^{-1} d g \wedge g^{-1} d g)$$
Now deal with the extra terms
Now deal with the extra terms
$$Tr(g^{-1} d g \wedge g^{-1} d A g ) = Tr(g^{-1} d g \wedge d(g^{-1} A) g - g^{-1} d g \wedge d g^{-1} \wedge A g) = Tr(g^{-1} d g \wedge d(g^{-1} A) g + g^{-1} d g \wedge g^{-1} A \wedge d g)$$
$$Tr(g^{-1} d g \wedge g^{-1} (d A) g ) = Tr(g^{-1} d g \wedge d(g^{-1} A) g - g^{-1} d g \wedge d g^{-1} \wedge A g) = Tr(g^{-1} d g \wedge d(g^{-1} A) g + g^{-1} d g \wedge g^{-1} A \wedge d g)$$
Finally
Finally
$$Tr(g^{-1} d g \wedge d(g^{-1} A) g) = Tr(d g \wedge d(g^{-1} A)) = Tr(d (gd(g^{-1} A))) = d Tr(g d(g^{-1} A))$$
$$Tr(g^{-1} d g \wedge d(g^{-1} A) g) = Tr(d g \wedge d(g^{-1} A)) = Tr(d (gd(g^{-1} A))) = d Tr(g d(g^{-1} A))$$
This shows that
Substituting this into equation one and rearranging gives.
$$Tr(g^{-1} A \wedge d A g + g^{-1} A \wedge A \wedge A g + \frac13 g^{-1} d g \wedge d g^{-1} \wedge d g) + d Tr(g d(g^{-1} A))$$
$$CS(A^g)=\int_\mathbb{R^3}Tr(g^{-1} A \wedge (d A) g + g^{-1} A \wedge A \wedge A g + \frac13 g^{-1} d g \wedge d g^{-1} \wedge d g) +\int_\mathbb{R^3} d Tr(g d(g^{-1} A))$$
A similar argument shows that
A similar argument shows that
$$Tr(g^{-1} d g \wedge g^{-1} d g \wedge g^{-1} d g) = -Tr(g^{-1} d g \wedge d g^{-1} \wedge d g) = dTr( $$
$$Tr(g^{-1} d g \wedge g^{-1} d g \wedge g^{-1} d g) = -Tr(g^{-1} d g \wedge d g^{-1} \wedge d g) = dTr( $$

Revision as of 13:36, 20 August 2018

Proposition: $CS(A^g) = CS(A)$ $$CS(A^g)=\int_\mathbb{R^3} Tr(A^g \wedge d A^g + \frac23 A^g \wedge A^g \wedge A^g)$$ $$Tr(A^g \wedge d A^g + \frac23 A^g \wedge A^g \wedge A^g) =$$ $$Tr(g^{-1} A \wedge (d A) g + g^{-1} A g \wedge d g^{-1} \wedge g^{-1} A g + g^{-1} d g \wedge g^{-1} (d A) g - g^{-1} d g \wedge g^{-1} A \wedge d g +$$ $$g^{-1} d g \wedge d g^{-1} \wedge A g - g^{-1} A \wedge A \wedge d g + g^{-1} A g \wedge d g^{-1} \wedge d g + g^{-1} d g \wedge d g^{-1} \wedge d g) +$$ $$\frac23 Tr( g^{-1} A \wedge A \wedge A g + g^{-1} A \wedge A \wedge d g + g^{-1} A g \wedge g^{-1} d g \wedge g^{-1} A g + g^{-1} A g \wedge g^{-1} d g \wedge g^{-1} d g +$$ $$g^{-1} d g \wedge g^{-1} A \wedge A g + g^{-1} d g \wedge g^{-1} A g \wedge g^{-1} d g + g^{-1} A g \wedge g^{-1} d g \wedge g^{-1} A g + g^{-1} d g \wedge g^{-1} d g \wedge g^{-1} d g) $$

Now $0 = d (g^{-1} g) = (d g) g^{-1} + g d g^{-1}$

So $(dg) g^{-1} = - g d g^{-1}$

Applying this to the fifth and seventh terms of the equation above yields $$ g^{-1} d g \wedge d g^{-1} \wedge A g = g^{-1} d g \wedge d g^{-1} g \wedge g^{-1} A g = - g^{-1} d g \wedge g^{-1} d g \wedge g^{-1} A g$$ and $$g^{-1} A g \wedge d g^{-1} \wedge d g = g^{-1} A g \wedge d g^{-1} g \wedge g^{-1} d g = - g^{-1} A g \wedge g^{-1} d g \wedge g^{-1} d g $$

Combining this with the fact that the trace is invariant under cyclic permutations show that the

$$Tr(g^{-1} A \wedge (d A) g - 2 g^{-1} A \wedge A \wedge d g - 2 g^{-1} A g \wedge g^{-1} d g \wedge g^{-1} d g +g^{-1} d g \wedge g^{-1} d A g - g^{-1} d g \wedge g^{-1} A \wedge d g + g^{-1} d g \wedge d g^{-1} \wedge d g) +$$ $$ \frac23 Tr( g^{-1} A \wedge A \wedge A g + 3 g^{-1} A \wedge A \wedge d g + 3 g^{-1} A g \wedge g^{-1} d g \wedge g^{-1} d g +g^{-1} d g \wedge g^{-1} d g \wedge g^{-1} d g) =$$ $$Tr(g^{-1} A \wedge d A g + g^{-1} d g \wedge g^{-1} d A g - g^{-1} d g \wedge g^{-1} A \wedge d g+ g^{-1} d g \wedge d g^{-1} \wedge d g) + \frac23 Tr( g^{-1} A \wedge A \wedge A g + g^{-1} d g \wedge g^{-1} d g \wedge g^{-1} d g)$$ Now deal with the extra terms $$Tr(g^{-1} d g \wedge g^{-1} (d A) g ) = Tr(g^{-1} d g \wedge d(g^{-1} A) g - g^{-1} d g \wedge d g^{-1} \wedge A g) = Tr(g^{-1} d g \wedge d(g^{-1} A) g + g^{-1} d g \wedge g^{-1} A \wedge d g)$$ Finally $$Tr(g^{-1} d g \wedge d(g^{-1} A) g) = Tr(d g \wedge d(g^{-1} A)) = Tr(d (gd(g^{-1} A))) = d Tr(g d(g^{-1} A))$$ This shows that $$CS(A^g)=\int_\mathbb{R^3}Tr(g^{-1} A \wedge (d A) g + g^{-1} A \wedge A \wedge A g + \frac13 g^{-1} d g \wedge d g^{-1} \wedge d g) +\int_\mathbb{R^3} d Tr(g d(g^{-1} A))$$ A similar argument shows that $$Tr(g^{-1} d g \wedge g^{-1} d g \wedge g^{-1} d g) = -Tr(g^{-1} d g \wedge d g^{-1} \wedge d g) = dTr( $$ to be completed