Notes for AKT-140307/0:41:01: Difference between revisions
Gavin.hurd (talk | contribs) No edit summary |
Gavin.hurd (talk | contribs) mNo edit summary |
||
Line 2: | Line 2: | ||
$$CS(A^g)=\int_\mathbb{R^3} Tr(A^g \wedge d A^g + \frac23 A^g \wedge A^g \wedge A^g)$$ |
$$CS(A^g)=\int_\mathbb{R^3} Tr(A^g \wedge d A^g + \frac23 A^g \wedge A^g \wedge A^g)$$ |
||
$$Tr(A^g \wedge d A^g + \frac23 A^g \wedge A^g \wedge A^g) =$$ |
$$Tr(A^g \wedge d A^g + \frac23 A^g \wedge A^g \wedge A^g) =$$ |
||
$$Tr(g^{-1} A \wedge d A g + g^{-1} A g \wedge d g^{-1} \wedge g^{-1} A g + g^{-1} d g \wedge g^{-1} d A g - g^{-1} d g \wedge g^{-1} A \wedge d g +$$ |
$$Tr(g^{-1} A \wedge (d A) g + g^{-1} A g \wedge d g^{-1} \wedge g^{-1} A g + g^{-1} d g \wedge g^{-1} (d A) g - g^{-1} d g \wedge g^{-1} A \wedge d g +$$ |
||
$$g^{-1} d g \wedge d g^{-1} \wedge A g - g^{-1} A \wedge A \wedge d g + g^{-1} A g \wedge d g^{-1} \wedge d g + g^{-1} d g \wedge d g^{-1} \wedge d g) +$$ |
$$g^{-1} d g \wedge d g^{-1} \wedge A g - g^{-1} A \wedge A \wedge d g + g^{-1} A g \wedge d g^{-1} \wedge d g + g^{-1} d g \wedge d g^{-1} \wedge d g) +$$ |
||
$$\frac23 Tr( g^{-1} A \wedge A \wedge A g + g^{-1} A \wedge A \wedge d g + g^{-1} A g \wedge g^{-1} d g \wedge g^{-1} A g + g^{-1} A g \wedge g^{-1} d g \wedge g^{-1} d g +$$ |
$$\frac23 Tr( g^{-1} A \wedge A \wedge A g + g^{-1} A \wedge A \wedge d g + g^{-1} A g \wedge g^{-1} d g \wedge g^{-1} A g + g^{-1} A g \wedge g^{-1} d g \wedge g^{-1} d g +$$ |
||
$$g^{-1} d g \wedge g^{-1} A \wedge A g + g^{-1} d g \wedge g^{-1} A g \wedge g^{-1} d g + g^{-1} A g \wedge g^{-1} d g \wedge g^{-1} A g + g^{-1} d g \wedge g^{-1} d g \wedge g^{-1} d g) $$ |
$$g^{-1} d g \wedge g^{-1} A \wedge A g + g^{-1} d g \wedge g^{-1} A g \wedge g^{-1} d g + g^{-1} A g \wedge g^{-1} d g \wedge g^{-1} A g + g^{-1} d g \wedge g^{-1} d g \wedge g^{-1} d g) $$ |
||
Now $0 = d g^{-1} g = d g g^{-1} + g d g^{-1}$ |
Now $0 = d (g^{-1} g) = (d g) g^{-1} + g d g^{-1}$ |
||
So $ |
So $(dg) g^{-1} = - g d g^{-1}$ |
||
Applying this to the fifth and seventh terms of the equation above yields |
Applying this to the fifth and seventh terms of the equation above yields |
||
Line 18: | Line 18: | ||
Combining this with the fact that the trace is invariant under cyclic permutations show that the |
Combining this with the fact that the trace is invariant under cyclic permutations show that the |
||
$$Tr(g^{-1} A \wedge d A g - 2 g^{-1} A \wedge A \wedge d g - 2 g^{-1} A g \wedge g^{-1} d g \wedge g^{-1} d g +g^{-1} d g \wedge g^{-1} d A g - g^{-1} d g \wedge g^{-1} A \wedge d g + g^{-1} d g \wedge d g^{-1} \wedge d g) +$$ |
$$Tr(g^{-1} A \wedge (d A) g - 2 g^{-1} A \wedge A \wedge d g - 2 g^{-1} A g \wedge g^{-1} d g \wedge g^{-1} d g +g^{-1} d g \wedge g^{-1} d A g - g^{-1} d g \wedge g^{-1} A \wedge d g + g^{-1} d g \wedge d g^{-1} \wedge d g) +$$ |
||
$$ \frac23 Tr( g^{-1} A \wedge A \wedge A g + 3 g^{-1} A \wedge A \wedge d g + 3 g^{-1} A g \wedge g^{-1} d g \wedge g^{-1} d g +g^{-1} d g \wedge g^{-1} d g \wedge g^{-1} d g) =$$ |
$$ \frac23 Tr( g^{-1} A \wedge A \wedge A g + 3 g^{-1} A \wedge A \wedge d g + 3 g^{-1} A g \wedge g^{-1} d g \wedge g^{-1} d g +g^{-1} d g \wedge g^{-1} d g \wedge g^{-1} d g) =$$ |
||
$$Tr(g^{-1} A \wedge d A g + g^{-1} d g \wedge g^{-1} d A g - g^{-1} d g \wedge g^{-1} A \wedge d g+ g^{-1} d g \wedge d g^{-1} \wedge d g) + \frac23 Tr( g^{-1} A \wedge A \wedge A g + g^{-1} d g \wedge g^{-1} d g \wedge g^{-1} d g)$$ |
$$Tr(g^{-1} A \wedge d A g + g^{-1} d g \wedge g^{-1} d A g - g^{-1} d g \wedge g^{-1} A \wedge d g+ g^{-1} d g \wedge d g^{-1} \wedge d g) + \frac23 Tr( g^{-1} A \wedge A \wedge A g + g^{-1} d g \wedge g^{-1} d g \wedge g^{-1} d g)$$ |
||
Now deal with the extra terms |
Now deal with the extra terms |
||
$$Tr(g^{-1} d g \wedge g^{-1} d A g ) = Tr(g^{-1} d g \wedge d(g^{-1} A) g - g^{-1} d g \wedge d g^{-1} \wedge A g) = Tr(g^{-1} d g \wedge d(g^{-1} A) g + g^{-1} d g \wedge g^{-1} A \wedge d g)$$ |
$$Tr(g^{-1} d g \wedge g^{-1} (d A) g ) = Tr(g^{-1} d g \wedge d(g^{-1} A) g - g^{-1} d g \wedge d g^{-1} \wedge A g) = Tr(g^{-1} d g \wedge d(g^{-1} A) g + g^{-1} d g \wedge g^{-1} A \wedge d g)$$ |
||
Finally |
Finally |
||
$$Tr(g^{-1} d g \wedge d(g^{-1} A) g) = Tr(d g \wedge d(g^{-1} A)) = Tr(d (gd(g^{-1} A))) = d Tr(g d(g^{-1} A))$$ |
$$Tr(g^{-1} d g \wedge d(g^{-1} A) g) = Tr(d g \wedge d(g^{-1} A)) = Tr(d (gd(g^{-1} A))) = d Tr(g d(g^{-1} A))$$ |
||
This shows that |
|||
Substituting this into equation one and rearranging gives. |
|||
$$Tr(g^{-1} A \wedge d A g + g^{-1} A \wedge A \wedge A g + \frac13 g^{-1} d g \wedge d g^{-1} \wedge d g) + d Tr(g d(g^{-1} A))$$ |
$$CS(A^g)=\int_\mathbb{R^3}Tr(g^{-1} A \wedge (d A) g + g^{-1} A \wedge A \wedge A g + \frac13 g^{-1} d g \wedge d g^{-1} \wedge d g) +\int_\mathbb{R^3} d Tr(g d(g^{-1} A))$$ |
||
A similar argument shows that |
A similar argument shows that |
||
$$Tr(g^{-1} d g \wedge g^{-1} d g \wedge g^{-1} d g) = -Tr(g^{-1} d g \wedge d g^{-1} \wedge d g) = dTr( $$ |
$$Tr(g^{-1} d g \wedge g^{-1} d g \wedge g^{-1} d g) = -Tr(g^{-1} d g \wedge d g^{-1} \wedge d g) = dTr( $$ |
Revision as of 13:36, 20 August 2018
Proposition: $CS(A^g) = CS(A)$ $$CS(A^g)=\int_\mathbb{R^3} Tr(A^g \wedge d A^g + \frac23 A^g \wedge A^g \wedge A^g)$$ $$Tr(A^g \wedge d A^g + \frac23 A^g \wedge A^g \wedge A^g) =$$ $$Tr(g^{-1} A \wedge (d A) g + g^{-1} A g \wedge d g^{-1} \wedge g^{-1} A g + g^{-1} d g \wedge g^{-1} (d A) g - g^{-1} d g \wedge g^{-1} A \wedge d g +$$ $$g^{-1} d g \wedge d g^{-1} \wedge A g - g^{-1} A \wedge A \wedge d g + g^{-1} A g \wedge d g^{-1} \wedge d g + g^{-1} d g \wedge d g^{-1} \wedge d g) +$$ $$\frac23 Tr( g^{-1} A \wedge A \wedge A g + g^{-1} A \wedge A \wedge d g + g^{-1} A g \wedge g^{-1} d g \wedge g^{-1} A g + g^{-1} A g \wedge g^{-1} d g \wedge g^{-1} d g +$$ $$g^{-1} d g \wedge g^{-1} A \wedge A g + g^{-1} d g \wedge g^{-1} A g \wedge g^{-1} d g + g^{-1} A g \wedge g^{-1} d g \wedge g^{-1} A g + g^{-1} d g \wedge g^{-1} d g \wedge g^{-1} d g) $$
Now $0 = d (g^{-1} g) = (d g) g^{-1} + g d g^{-1}$
So $(dg) g^{-1} = - g d g^{-1}$
Applying this to the fifth and seventh terms of the equation above yields $$ g^{-1} d g \wedge d g^{-1} \wedge A g = g^{-1} d g \wedge d g^{-1} g \wedge g^{-1} A g = - g^{-1} d g \wedge g^{-1} d g \wedge g^{-1} A g$$ and $$g^{-1} A g \wedge d g^{-1} \wedge d g = g^{-1} A g \wedge d g^{-1} g \wedge g^{-1} d g = - g^{-1} A g \wedge g^{-1} d g \wedge g^{-1} d g $$
Combining this with the fact that the trace is invariant under cyclic permutations show that the
$$Tr(g^{-1} A \wedge (d A) g - 2 g^{-1} A \wedge A \wedge d g - 2 g^{-1} A g \wedge g^{-1} d g \wedge g^{-1} d g +g^{-1} d g \wedge g^{-1} d A g - g^{-1} d g \wedge g^{-1} A \wedge d g + g^{-1} d g \wedge d g^{-1} \wedge d g) +$$ $$ \frac23 Tr( g^{-1} A \wedge A \wedge A g + 3 g^{-1} A \wedge A \wedge d g + 3 g^{-1} A g \wedge g^{-1} d g \wedge g^{-1} d g +g^{-1} d g \wedge g^{-1} d g \wedge g^{-1} d g) =$$ $$Tr(g^{-1} A \wedge d A g + g^{-1} d g \wedge g^{-1} d A g - g^{-1} d g \wedge g^{-1} A \wedge d g+ g^{-1} d g \wedge d g^{-1} \wedge d g) + \frac23 Tr( g^{-1} A \wedge A \wedge A g + g^{-1} d g \wedge g^{-1} d g \wedge g^{-1} d g)$$ Now deal with the extra terms $$Tr(g^{-1} d g \wedge g^{-1} (d A) g ) = Tr(g^{-1} d g \wedge d(g^{-1} A) g - g^{-1} d g \wedge d g^{-1} \wedge A g) = Tr(g^{-1} d g \wedge d(g^{-1} A) g + g^{-1} d g \wedge g^{-1} A \wedge d g)$$ Finally $$Tr(g^{-1} d g \wedge d(g^{-1} A) g) = Tr(d g \wedge d(g^{-1} A)) = Tr(d (gd(g^{-1} A))) = d Tr(g d(g^{-1} A))$$ This shows that $$CS(A^g)=\int_\mathbb{R^3}Tr(g^{-1} A \wedge (d A) g + g^{-1} A \wedge A \wedge A g + \frac13 g^{-1} d g \wedge d g^{-1} \wedge d g) +\int_\mathbb{R^3} d Tr(g d(g^{-1} A))$$ A similar argument shows that $$Tr(g^{-1} d g \wedge g^{-1} d g \wedge g^{-1} d g) = -Tr(g^{-1} d g \wedge d g^{-1} \wedge d g) = dTr( $$ to be completed