Notes for AKT-140214/0:08:40: Difference between revisions

From Drorbn
Jump to navigationJump to search
(Created page with "The set of differential <math>k</math>-forms on a manifold <math>M</math> (example <math>\mathbb{R}^3</math>) is a vector space <math>\Omega^k(M)</math> and when <math>k=0</ma...")
 
No edit summary
 
Line 8: Line 8:
2. If we have a 1-form <math>v = v_x\mathrm{d}x + v_y\mathrm{d}y + v_z\mathrm{d}z</math>, then <math>\mathrm{d}v = \left( \frac{\partial{v_z}}{\partial{y}}- \frac{\partial{v_y}}{\partial{z}}\right)\mathrm{d}y\wedge \mathrm{d}z + \left( \frac{\partial{v_x}}{\partial{z}}- \frac{\partial{v_z}}{\partial{x}}\right)\mathrm{d}x\wedge \mathrm{d}z + \left( \frac{\partial{v_x}}{\partial{y}} - \frac{\partial{v_y}}{\partial{x}}\right)\mathrm{d}x\wedge \mathrm{d}y</math> which is a two form. In this case we have <math>d: \mathrm{d} \Omega^1(\mathbb{R}^3) \rightarrow \Omega^2(\mathbb{R}^3)</math> is the <math>\mathrm{curl}</math> operator.
2. If we have a 1-form <math>v = v_x\mathrm{d}x + v_y\mathrm{d}y + v_z\mathrm{d}z</math>, then <math>\mathrm{d}v = \left( \frac{\partial{v_z}}{\partial{y}}- \frac{\partial{v_y}}{\partial{z}}\right)\mathrm{d}y\wedge \mathrm{d}z + \left( \frac{\partial{v_x}}{\partial{z}}- \frac{\partial{v_z}}{\partial{x}}\right)\mathrm{d}x\wedge \mathrm{d}z + \left( \frac{\partial{v_x}}{\partial{y}} - \frac{\partial{v_y}}{\partial{x}}\right)\mathrm{d}x\wedge \mathrm{d}y</math> which is a two form. In this case we have <math>d: \mathrm{d} \Omega^1(\mathbb{R}^3) \rightarrow \Omega^2(\mathbb{R}^3)</math> is the <math>\mathrm{curl}</math> operator.


3. If we have 2-form <math>\omega = (\omega_x, \omega_y, \omega_z)</math> then again get a 3-form <math>\mathrm{d}\omega = \left( \frac{\partial{\omega_x}}{\partial{x}} + \frac{\partial{\omega_y}}{\partial{y}} + \frac{\partial{\omega_z}}{\partial{z}} \right)\mathrm{d}x\wedge\mathrm{d}y\wedge \mathrm{d}z</math>. If we think of <math>\mathrm{d}x\wedge\mathrm{d}y\wedge \mathrm{d}z</math> as a function <math>f</math>, then again we get <math>d: \mathrm{d} \Omega^2(\mathbb{R}^3) \rightarrow \Omega^3(\mathbb{R}^3)</math> is the <math>\mathrm{div}</math> operator.
3. If we have 2-form <math>\omega = (\omega_x, \omega_y, \omega_z)</math> then again get a 3-form <math>\mathrm{d}\omega = \left( \frac{\partial{\omega_x}}{\partial{x}} + \frac{\partial{\omega_y}}{\partial{y}} + \frac{\partial{\omega_z}}{\partial{z}} \right)\mathrm{d}x\wedge\mathrm{d}y\wedge \mathrm{d}z</math>. If we think of <math>\mathrm{d}x\wedge\mathrm{d}y\wedge \mathrm{d}z</math> as a function <math>f</math>, then again we get <math>d: \mathrm{d} \Omega^2(\mathbb{R}^3) \rightarrow \Omega^3(\mathbb{R}^3)</math> is the divergence operator <math>\mathrm{div}</math>.

Latest revision as of 23:42, 27 June 2018

The set of differential -forms on a manifold (example ) is a vector space and when then is the set of smooth functions. Thus smooth functions are 0-forms. Now -forms are integrated on -manifolds. For example, a 1-form can be integrated on a curve . Also differential forms can be differentiated using the operator d called the exterior operator where acts on a -form to produce a -form and that .

Now


1. if , then is a 1-form so that . Thus is the gradient operator .

2. If we have a 1-form , then which is a two form. In this case we have is the operator.

3. If we have 2-form then again get a 3-form . If we think of as a function , then again we get is the divergence operator .