Notes for AKT-140124/0:23:30: Difference between revisions

From Drorbn
Jump to navigationJump to search
No edit summary
No edit summary
 
Line 1: Line 1:
Let <math>\Lambda</math> be a symmetric, positive definite, non-singular square matrix. Then we have the following:
Let <math>\Lambda</math> be a symmetric, positive definite, non-singular square matrix. Then we have the following:


<math> \langle x - \Lambda^{-1} y, \Lambda(x - \Lambda^{-1}y)\rangle = <x,\Lambda x> - <x, y> -<\Lambda^{-1}y, \Lambda x> + <\Lambda^{-1}y,y> </math>.
<math> \langle x - \Lambda^{-1} y, \Lambda(x - \Lambda^{-1}y)\rangle = \langle x,\Lambda x \rangle - \langle x, y \rangle - \langle \Lambda^{-1}y, \Lambda x \rangle + \langle \Lambda^{-1}y,y \rangle </math>.


We have <math><\Lambda^{-1}y, \Lambda x> = <x,y> </math> and <math><\Lambda^{-1}y,y> = <y,\Lambda^{-1}y></math> since <math>\Lambda</math> is symmetric.
We have <math> \langle \Lambda^{-1}y, \Lambda x \rangle = \langle x,y\rangle </math> and <math> \langle \Lambda^{-1}y,y \rangle = \langle y,\Lambda^{-1}y \rangle</math> since <math>\Lambda</math> is symmetric.


From the above, we see that <math>-\frac12 <x - \Lambda^{-1} y, \Lambda(x - \Lambda^{-1}y)> + \frac12<y,\Lambda^{-1}y> = -\frac12<x,\Lambda x> + <x, y></math>
From the above, we see that <math>-\frac12 \langle x - \Lambda^{-1} y, \Lambda(x - \Lambda^{-1}y) \rangle + \frac12 \langle y,\Lambda^{-1}y \rangle = -\frac12 \langle x,\Lambda x \rangle + \langle x, y \rangle</math>

Latest revision as of 14:03, 18 June 2018

Let [math]\displaystyle{ \Lambda }[/math] be a symmetric, positive definite, non-singular square matrix. Then we have the following:

[math]\displaystyle{ \langle x - \Lambda^{-1} y, \Lambda(x - \Lambda^{-1}y)\rangle = \langle x,\Lambda x \rangle - \langle x, y \rangle - \langle \Lambda^{-1}y, \Lambda x \rangle + \langle \Lambda^{-1}y,y \rangle }[/math].

We have [math]\displaystyle{ \langle \Lambda^{-1}y, \Lambda x \rangle = \langle x,y\rangle }[/math] and [math]\displaystyle{ \langle \Lambda^{-1}y,y \rangle = \langle y,\Lambda^{-1}y \rangle }[/math] since [math]\displaystyle{ \Lambda }[/math] is symmetric.

From the above, we see that [math]\displaystyle{ -\frac12 \langle x - \Lambda^{-1} y, \Lambda(x - \Lambda^{-1}y) \rangle + \frac12 \langle y,\Lambda^{-1}y \rangle = -\frac12 \langle x,\Lambda x \rangle + \langle x, y \rangle }[/math]