Notes for AKT-140106/0:43:23: Difference between revisions
Leo algknt (talk | contribs) No edit summary |
Leo algknt (talk | contribs) No edit summary |
||
| Line 17: | Line 17: | ||
'''Using linear Algebra: Idea from class on Wednesday 23 May, 2018''' |
'''Using linear Algebra: Idea from class on Wednesday 23 May, 2018''' |
||
Let <math>D</math> be a knot diagram for the knot <math>K</math> with <math>n</math> crossings. There are <math>n</math> arcs. Let <math>a_1, a_1, \ldots, a_n \in {\mathbb Z}_3</math> represent the arcs. Now let <math>a,b,c \in {\mathbb Z}_3</math>. Define <math>\wedge : {\mathbb Z}_3 \times {\mathbb Z}_3 \rightarrow {\mathbb Z}_3</math> by |
|||
<math>a\wedge b = |
|||
a\wedge b = \left\{ \begin{array}{cc} a, & a = b\\ c, & a\not= b \end{array} \right., so that a\wedge b + a + b \equiv 0\mod 3. |
|||
\left\{ |
|||
| ⚫ | Then, with the above definition, we get a linear equation a_{i_1} + a_{i_2} + a_{i_3} \equiv 0\mod 3 for each each of the n crossings, where i_1, i_2, i_3 \in \{1, 2, \ldots, n\}. Thus we get a system of n linear equation, from which we get a matrix M. The nullspace \mathrm{Null}(M) of M is the solution to this system of equation and this is exactly the set of all 3-colourings of D. This is a vector space of size \lambda(K) =|\mathrm{Null}(M)| = 3^{\dim(\mathrm{Null}(M))} |
||
\begin{array}{cc} |
|||
a, & a = b\\ |
|||
c, & a\not= b |
|||
\end{array} |
|||
\right.</math>, |
|||
so that <math>a\wedge b + a + b \equiv 0\mod 3</math>. |
|||
| ⚫ | Then, with the above definition, we get a linear equation <math>a_{i_1} + a_{i_2} + a_{i_3} \equiv 0\mod 3</math> for each each of the <math>n</math> crossings, where <math>i_1, i_2, i_3 \in \{1, 2, \ldots, n\}</math>. Thus we get a system of <math>n</math> linear equation, from which we get a matrix <math>M</math>. The nullspace <math>\mathrm{Null}(M)</math> of <math>M</math> is the solution to this system of equation and this is exactly the set of all 3-colourings of <math>D</math>. This is a vector space of size <math>\lambda(K) =|\mathrm{Null}(M)| = 3^{\dim(\mathrm{Null}(M))}</math> |
||
Revision as of 01:06, 24 May 2018
Claim: The number of legal 3-colorings of a knot diagram is always a power of 3.
This is an expansion on the proof given by Przytycki (https://arxiv.org/abs/math/0608172).
We'll show that the set of legal 3-colorings [math]\displaystyle{ \mathcal{S} }[/math] forms a subgroup of [math]\displaystyle{ Z_3^r }[/math], for some r, which suffices to prove the claim. First, label each of the segments of the given diagram 1 through n, and denote a 3-coloring of this diagram by [math]\displaystyle{ x = (x_1, x_2, ..., x_n) }[/math], where each [math]\displaystyle{ x_n }[/math] is an element of the cyclic group of order 3 [math]\displaystyle{ Z_3 = \lt a|a^3=1\gt }[/math] (each element representing a different colour). It is clear that [math]\displaystyle{ \mathcal{S} }[/math] is a subset of [math]\displaystyle{ Z_3^n }[/math]. To show it is a subgroup, we'll take [math]\displaystyle{ x = (x_1, x_2, ..., x_n), y = (y_1, y_2, ..., y_n) \in \mathcal{S} }[/math], and show that [math]\displaystyle{ xy^{-1} = (x_1y_1^{-1}, x_2y_2^{-1}, ..., x_ny_n^{-1}) \in \mathcal{S} }[/math]. It suffices to restrict our attention to one crossing in the given diagram, so we can without loss of generality let n = 3.
First, we (sub)claim that a crossing (involving colours [math]\displaystyle{ x_1, x_2, x_3 }[/math] is legal if and only if [math]\displaystyle{ x_1x_2x_3 = 1 }[/math] in [math]\displaystyle{ Z_3 }[/math]. Indeed, if the crossing is legal, either it is the trivial crossing in which case their product is clearly 1, or each [math]\displaystyle{ x_i }[/math] is distinct, in which case [math]\displaystyle{ x_1x_2x_3 = 1aa^2 = a^3 = 1 }[/math]. Conversely, suppose [math]\displaystyle{ x_1x_2x_3 = 1 }[/math], and suppose [math]\displaystyle{ x_1 = x_2 }[/math]. It suffices to show that [math]\displaystyle{ x_3 = x_1 }[/math]. This follows by case checking: if [math]\displaystyle{ x_1 = 1 }[/math], then [math]\displaystyle{ 1 = x_1x_2x_3 = x_3 }[/math]; if [math]\displaystyle{ x_1 = a }[/math], then [math]\displaystyle{ 1=a^2x_3 }[/math], implying that [math]\displaystyle{ x_3 = a^{-2} = a }[/math]; and if [math]\displaystyle{ x_1 = a^2 }[/math], then [math]\displaystyle{ 1 = a^4x_3 = ax_3 }[/math], implying that [math]\displaystyle{ x_3 = a^{-1} = a^2 }[/math]. Thus, the subclaim is proven.
As a result, [math]\displaystyle{ xy^{-1} = (x_1y_1^{-1}, x_2y_2^{-1}, x_3y_3^{-1}) }[/math] satisfies [math]\displaystyle{ x_1y_1^{-1}x_2y_2^{-1}x_3y_3^{-1} = (x_1x_2x_3)(y_3y_2y_1)^{-1} = 1 }[/math] since both [math]\displaystyle{ x, y \in \mathcal{S} }[/math]. This implies that [math]\displaystyle{ xy^{-1} \in \mathcal{S} }[/math], and hence shows that [math]\displaystyle{ \mathcal{S} }[/math] is a subgroup of [math]\displaystyle{ Z_3^n }[/math] for n = the number of line segments in the diagram. By Lagrange's theorem, the number of legal 3-colorings (the order of [math]\displaystyle{ \mathcal{S} }[/math]) is a power of 3.
Using linear Algebra: Idea from class on Wednesday 23 May, 2018
Let [math]\displaystyle{ D }[/math] be a knot diagram for the knot [math]\displaystyle{ K }[/math] with [math]\displaystyle{ n }[/math] crossings. There are [math]\displaystyle{ n }[/math] arcs. Let [math]\displaystyle{ a_1, a_1, \ldots, a_n \in {\mathbb Z}_3 }[/math] represent the arcs. Now let [math]\displaystyle{ a,b,c \in {\mathbb Z}_3 }[/math]. Define [math]\displaystyle{ \wedge : {\mathbb Z}_3 \times {\mathbb Z}_3 \rightarrow {\mathbb Z}_3 }[/math] by
[math]\displaystyle{ a\wedge b =
\left\{
\begin{array}{cc}
a, & a = b\\
c, & a\not= b
\end{array}
\right. }[/math],
so that [math]\displaystyle{ a\wedge b + a + b \equiv 0\mod 3 }[/math].
Then, with the above definition, we get a linear equation [math]\displaystyle{ a_{i_1} + a_{i_2} + a_{i_3} \equiv 0\mod 3 }[/math] for each each of the [math]\displaystyle{ n }[/math] crossings, where [math]\displaystyle{ i_1, i_2, i_3 \in \{1, 2, \ldots, n\} }[/math]. Thus we get a system of [math]\displaystyle{ n }[/math] linear equation, from which we get a matrix [math]\displaystyle{ M }[/math]. The nullspace [math]\displaystyle{ \mathrm{Null}(M) }[/math] of [math]\displaystyle{ M }[/math] is the solution to this system of equation and this is exactly the set of all 3-colourings of [math]\displaystyle{ D }[/math]. This is a vector space of size [math]\displaystyle{ \lambda(K) =|\mathrm{Null}(M)| = 3^{\dim(\mathrm{Null}(M))} }[/math]