VasCalc Results - ChordMod4T: Difference between revisions
From Drorbn
Jump to navigationJump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
This page documents some computational results obtained by using the <b>ChordsMod4T</b> software component of the [[VasCalc]] project. We denote by A(l,m,n) the formal (rational) vector space generated by all chord diagrams with n chords on a skeleton of l lines and m circles, modulo the 4T relations. The algorithm is straightforward: first all such diagrams are constructed, then relations are introduced iteratively over all possible terms in a |
This page documents some computational results obtained by using the <b>ChordsMod4T</b> software component of the [[VasCalc]] project. We denote by <math>{\mathcal A}(l,m,n)</math> the formal (rational) vector space generated by all chord diagrams with <math>n</math> chords on a skeleton of <math>l</math> lines and <math>m</math> circles, modulo the <math>4T</math> relations. The algorithm is straightforward: first all such diagrams are constructed, then relations are introduced iteratively over all possible terms in a <math>4T</math> relation. See the [[VasCalc Documentation - ChordsMod4T| documentation]] for further information about the program and how these results were generated. |
||
===Some Dimensions of A(l,m,n)=== |
===Some Dimensions of <math>{\mathcal A}(l,m,n)</math>=== |
||
The tables below give the dimensions of A(l,m,n) for various values of l, m and n. Each table corresponds to a fixed value of n - that is, the number of chords. |
The tables below give the dimensions of <math>{\mathcal A}(l,m,n)</math> for various values of <math>l</math>, <math>m</math> and <math>n</math>. Each table corresponds to a fixed value of <math>n</math> - that is, the number of chords. |
||
Line 10: | Line 10: | ||
!rowspan="2" width="100px"|Number of Lines |
!rowspan="2" width="100px"|Number of Lines |
||
!colspan="10"|Number of Circles |
!colspan="10"|Number of Circles |
||
|- |
|- align=right |
||
||0||1||2||3||4||5||6||7||8||9 |
||0||1||2||3||4||5||6||7||8||9 |
||
|- align=right |
|||
|- |
|||
|0||0||2||8||27||69||145||272||469||758||1164 |
|0||0||2||8||27||69||145||272||469||758||1164 |
||
|- align=right |
|||
|- |
|||
|1||2||8||26||68||145||272||469||758||1164||1715 |
|1||2||8||26||68||145||272||469||758||1164||1715 |
||
|- align=right |
|||
|- |
|||
|2||9||25||66||144||272||469||758||1164||1715||2442 |
|2||9||25||66||144||272||469||758||1164||1715||2442 |
||
|- align=right |
|||
|- |
|||
|3||28||63||141||271||469||758||1164||1715||2442||3379 |
|3||28||63||141||271||469||758||1164||1715||2442||3379 |
||
|- align=right |
|||
|- |
|||
|4||69||135||267||468||758||1164||1715||2442||3379||4563 |
|4||69||135||267||468||758||1164||1715||2442||3379||4563 |
||
|- align=right |
|||
|- |
|||
|5||145||257||463||757||1164||1715||2442||3379||4563||6034 |
|5||145||257||463||757||1164||1715||2442||3379||4563||6034 |
||
|- align=right |
|||
|- |
|||
|6||272||448||751||1163||1715||2442||3379||4563||6034||7835 |
|6||272||448||751||1163||1715||2442||3379||4563||6034||7835 |
||
|- align=right |
|||
|- |
|||
|7||469||730||1156||1714||2442||3379||4563||6034||7835||10012 |
|7||469||730||1156||1714||2442||3379||4563||6034||7835||10012 |
||
|} |
|} |
||
Line 39: | Line 39: | ||
|0||1||2||3||4||5||6 |
|0||1||2||3||4||5||6 |
||
|- align=right |
|||
|- |
|||
|0||0||3||19||92||370||1120||2778 |
|0||0||3||19||92||370||1120||2778 |
||
|- align=right |
|||
|- |
|||
|1||3||19||88||351||1096||2768||6083 |
|1||3||19||88||351||1096||2768||6083 |
||
|- align=right |
|||
|- |
|||
|2||23|| 88||329||1053||2734||6073||12176 |
|2||23|| 88||329||1053||2734||6073||12176 |
||
|- align=right |
|||
|- |
|||
|3||111||321||991||2657||6029||12166||22689 |
|3||111||321||991||2657||6029||12166||22689 |
||
|- align=right |
|||
|- |
|||
|4||394||954||2524||5908||12112||22679 |
|4||394||954||2524||5908||12112||22679 |
||
|- align=right |
|||
|- |
|||
|5||1130||2418||5664||11937||22615||39875 |
|5||1130||2418||5664||11937||22615||39875 |
||
|- align=right |
|||
|- |
|||
|6||2778||5424||11533||22376||39801||66793 |
|6||2778||5424||11533||22376||39801||66793 |
||
|} |
|} |
Revision as of 08:40, 4 July 2006
This page documents some computational results obtained by using the ChordsMod4T software component of the VasCalc project. We denote by the formal (rational) vector space generated by all chord diagrams with chords on a skeleton of lines and circles, modulo the relations. The algorithm is straightforward: first all such diagrams are constructed, then relations are introduced iteratively over all possible terms in a relation. See the documentation for further information about the program and how these results were generated.
Some Dimensions of
The tables below give the dimensions of for various values of , and . Each table corresponds to a fixed value of - that is, the number of chords.
Number of Lines | Number of Circles | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
0 | 0 | 2 | 8 | 27 | 69 | 145 | 272 | 469 | 758 | 1164 |
1 | 2 | 8 | 26 | 68 | 145 | 272 | 469 | 758 | 1164 | 1715 |
2 | 9 | 25 | 66 | 144 | 272 | 469 | 758 | 1164 | 1715 | 2442 |
3 | 28 | 63 | 141 | 271 | 469 | 758 | 1164 | 1715 | 2442 | 3379 |
4 | 69 | 135 | 267 | 468 | 758 | 1164 | 1715 | 2442 | 3379 | 4563 |
5 | 145 | 257 | 463 | 757 | 1164 | 1715 | 2442 | 3379 | 4563 | 6034 |
6 | 272 | 448 | 751 | 1163 | 1715 | 2442 | 3379 | 4563 | 6034 | 7835 |
7 | 469 | 730 | 1156 | 1714 | 2442 | 3379 | 4563 | 6034 | 7835 | 10012 |
Number of Lines | Number of Circles | ||||||
---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | |
0 | 0 | 3 | 19 | 92 | 370 | 1120 | 2778 |
1 | 3 | 19 | 88 | 351 | 1096 | 2768 | 6083 |
2 | 23 | 88 | 329 | 1053 | 2734 | 6073 | 12176 |
3 | 111 | 321 | 991 | 2657 | 6029 | 12166 | 22689 |
4 | 394 | 954 | 2524 | 5908 | 12112 | 22679 | |
5 | 1130 | 2418 | 5664 | 11937 | 22615 | 39875 | |
6 | 2778 | 5424 | 11533 | 22376 | 39801 | 66793 |