VasCalc Results - ChordMod4T: Difference between revisions
No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
This page documents some computational results obtained by using the <b>ChordsMod4T</b> software component of the [[VasCalc]] project. We denote by A(l,m,n) the formal (rational) vector space generated by all chord diagrams with n chords on a skeleton of l lines and m circles, modulo the 4T relations. The algorithm is straightforward: first all such diagrams are constructed, then relations are introduced iteratively over all possible terms in a |
This page documents some computational results obtained by using the <b>ChordsMod4T</b> software component of the [[VasCalc]] project. We denote by <math>{\mathcal A}(l,m,n)</math> the formal (rational) vector space generated by all chord diagrams with <math>n</math> chords on a skeleton of <math>l</math> lines and <math>m</math> circles, modulo the <math>4T</math> relations. The algorithm is straightforward: first all such diagrams are constructed, then relations are introduced iteratively over all possible terms in a <math>4T</math> relation. See the [[VasCalc Documentation - ChordsMod4T| documentation]] for further information about the program and how these results were generated. |
||
===Some Dimensions of A(l,m,n)=== |
===Some Dimensions of <math>{\mathcal A}(l,m,n)</math>=== |
||
The tables below give the dimensions of A(l,m,n) for various values of l, m and n. Each table corresponds to a fixed value of n - that is, the number of chords. |
The tables below give the dimensions of <math>{\mathcal A}(l,m,n)</math> for various values of <math>l</math>, <math>m</math> and <math>n</math>. Each table corresponds to a fixed value of <math>n</math> - that is, the number of chords. |
||
| Line 10: | Line 10: | ||
!rowspan="2" width="100px"|Number of Lines |
!rowspan="2" width="100px"|Number of Lines |
||
!colspan="10"|Number of Circles |
!colspan="10"|Number of Circles |
||
|- |
|- align=right |
||
||0||1||2||3||4||5||6||7||8||9 |
||0||1||2||3||4||5||6||7||8||9 |
||
|- align=right |
|||
|- |
|||
|0||0||2||8||27||69||145||272||469||758||1164 |
|0||0||2||8||27||69||145||272||469||758||1164 |
||
|- align=right |
|||
|- |
|||
|1||2||8||26||68||145||272||469||758||1164||1715 |
|1||2||8||26||68||145||272||469||758||1164||1715 |
||
|- align=right |
|||
|- |
|||
|2||9||25||66||144||272||469||758||1164||1715||2442 |
|2||9||25||66||144||272||469||758||1164||1715||2442 |
||
|- align=right |
|||
|- |
|||
|3||28||63||141||271||469||758||1164||1715||2442||3379 |
|3||28||63||141||271||469||758||1164||1715||2442||3379 |
||
|- align=right |
|||
|- |
|||
|4||69||135||267||468||758||1164||1715||2442||3379||4563 |
|4||69||135||267||468||758||1164||1715||2442||3379||4563 |
||
|- align=right |
|||
|- |
|||
|5||145||257||463||757||1164||1715||2442||3379||4563||6034 |
|5||145||257||463||757||1164||1715||2442||3379||4563||6034 |
||
|- align=right |
|||
|- |
|||
|6||272||448||751||1163||1715||2442||3379||4563||6034||7835 |
|6||272||448||751||1163||1715||2442||3379||4563||6034||7835 |
||
|- align=right |
|||
|- |
|||
|7||469||730||1156||1714||2442||3379||4563||6034||7835||10012 |
|7||469||730||1156||1714||2442||3379||4563||6034||7835||10012 |
||
|} |
|} |
||
| Line 39: | Line 39: | ||
|0||1||2||3||4||5||6 |
|0||1||2||3||4||5||6 |
||
|- align=right |
|||
|- |
|||
|0||0||3||19||92||370||1120||2778 |
|0||0||3||19||92||370||1120||2778 |
||
|- align=right |
|||
|- |
|||
|1||3||19||88||351||1096||2768||6083 |
|1||3||19||88||351||1096||2768||6083 |
||
|- align=right |
|||
|- |
|||
|2||23|| 88||329||1053||2734||6073||12176 |
|2||23|| 88||329||1053||2734||6073||12176 |
||
|- align=right |
|||
|- |
|||
|3||111||321||991||2657||6029||12166||22689 |
|3||111||321||991||2657||6029||12166||22689 |
||
|- align=right |
|||
|- |
|||
|4||394||954||2524||5908||12112||22679 |
|4||394||954||2524||5908||12112||22679 |
||
|- align=right |
|||
|- |
|||
|5||1130||2418||5664||11937||22615||39875 |
|5||1130||2418||5664||11937||22615||39875 |
||
|- align=right |
|||
|- |
|||
|6||2778||5424||11533||22376||39801||66793 |
|6||2778||5424||11533||22376||39801||66793 |
||
|} |
|} |
||
Revision as of 08:40, 4 July 2006
This page documents some computational results obtained by using the ChordsMod4T software component of the VasCalc project. We denote by [math]\displaystyle{ {\mathcal A}(l,m,n) }[/math] the formal (rational) vector space generated by all chord diagrams with [math]\displaystyle{ n }[/math] chords on a skeleton of [math]\displaystyle{ l }[/math] lines and [math]\displaystyle{ m }[/math] circles, modulo the [math]\displaystyle{ 4T }[/math] relations. The algorithm is straightforward: first all such diagrams are constructed, then relations are introduced iteratively over all possible terms in a [math]\displaystyle{ 4T }[/math] relation. See the documentation for further information about the program and how these results were generated.
Some Dimensions of [math]\displaystyle{ {\mathcal A}(l,m,n) }[/math]
The tables below give the dimensions of [math]\displaystyle{ {\mathcal A}(l,m,n) }[/math] for various values of [math]\displaystyle{ l }[/math], [math]\displaystyle{ m }[/math] and [math]\displaystyle{ n }[/math]. Each table corresponds to a fixed value of [math]\displaystyle{ n }[/math] - that is, the number of chords.
| Number of Lines | Number of Circles | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
| 0 | 0 | 2 | 8 | 27 | 69 | 145 | 272 | 469 | 758 | 1164 |
| 1 | 2 | 8 | 26 | 68 | 145 | 272 | 469 | 758 | 1164 | 1715 |
| 2 | 9 | 25 | 66 | 144 | 272 | 469 | 758 | 1164 | 1715 | 2442 |
| 3 | 28 | 63 | 141 | 271 | 469 | 758 | 1164 | 1715 | 2442 | 3379 |
| 4 | 69 | 135 | 267 | 468 | 758 | 1164 | 1715 | 2442 | 3379 | 4563 |
| 5 | 145 | 257 | 463 | 757 | 1164 | 1715 | 2442 | 3379 | 4563 | 6034 |
| 6 | 272 | 448 | 751 | 1163 | 1715 | 2442 | 3379 | 4563 | 6034 | 7835 |
| 7 | 469 | 730 | 1156 | 1714 | 2442 | 3379 | 4563 | 6034 | 7835 | 10012 |
| Number of Lines | Number of Circles | ||||||
|---|---|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | |
| 0 | 0 | 3 | 19 | 92 | 370 | 1120 | 2778 |
| 1 | 3 | 19 | 88 | 351 | 1096 | 2768 | 6083 |
| 2 | 23 | 88 | 329 | 1053 | 2734 | 6073 | 12176 |
| 3 | 111 | 321 | 991 | 2657 | 6029 | 12166 | 22689 |
| 4 | 394 | 954 | 2524 | 5908 | 12112 | 22679 | |
| 5 | 1130 | 2418 | 5664 | 11937 | 22615 | 39875 | |
| 6 | 2778 | 5424 | 11533 | 22376 | 39801 | 66793 | |