1617-257/Riddle Repository: Difference between revisions

From Drorbn
Jump to navigationJump to search
(Created page with " == Riddle Repository == ===== A collection of the riddles posed at the beginning of each lecture ===== {| border="1px" cellpadding="1" cellspacing="0" width="80%" style="fon...")
 
Line 10: Line 10:
|-
|-
|Sept 12
|Sept 12
|We want to compute <math>(x^x)'</math>.
|

Prof. A claims <math>(x^n)'=nx^{n-1}</math>, so <math>(x^x)' = xx^{x-1} = x^x</math>

Prof. B claims <math> (a^x)' = a^x\log(a)</math>, so <math>(x^x)' = x^x\log(x)</math>

Smart student says <math>(x^x)' = x^x + x^x\log(x)</math>. ''Why is the derivative the sum of the Prof's solutions?''
|
|
|-
|-
|Sept 14
|Sept 14
| Can all of <math>\mathbb{R}^3</math> be covered by a set of disjoint, non-degenerate, circles?
| Can all of <math>\mathbb{R}^2</math> be covered by a set of disjoint, non-degenerate, circles? What about <math>\mathbb{R}^3</math>? <math>\mathbb{R}^4</math>?
|
|
|-
|-

Revision as of 11:43, 22 September 2016

Riddle Repository

A collection of the riddles posed at the beginning of each lecture
Date Riddle Solutions, Discussion, etc...
Sept 12 We want to compute [math]\displaystyle{ (x^x)' }[/math].

Prof. A claims [math]\displaystyle{ (x^n)'=nx^{n-1} }[/math], so [math]\displaystyle{ (x^x)' = xx^{x-1} = x^x }[/math]

Prof. B claims [math]\displaystyle{ (a^x)' = a^x\log(a) }[/math], so [math]\displaystyle{ (x^x)' = x^x\log(x) }[/math]

Smart student says [math]\displaystyle{ (x^x)' = x^x + x^x\log(x) }[/math]. Why is the derivative the sum of the Prof's solutions?

Sept 14 Can all of [math]\displaystyle{ \mathbb{R}^2 }[/math] be covered by a set of disjoint, non-degenerate, circles? What about [math]\displaystyle{ \mathbb{R}^3 }[/math]? [math]\displaystyle{ \mathbb{R}^4 }[/math]?
Sept 16 Can you find uncountably many disjoint subsets of [math]\displaystyle{ \mathbb{R} }[/math]?
Sept 19 Can uncountably many Y shapes be fit into [math]\displaystyle{ \mathbb{R}^2 }[/math]
Sept 21 On any pair of potatoes, can you draw a pair of 3D congruent curves?
Sept 23